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BACKGROUND

q Mobile Vision Analytics
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Mobile vision analytics (MVA) enables machines to understand 
the physical world by analyzing videos captured by mobile 
devices in real time.

With deep neural network (DNN) based vision models, MVA can 
help bridge the gap between the physical and virtual worlds.

Given the constrained computational resources and heat 
dissipation issues of mobile devices, existing MVA systems tend 
to offload heavy DNN inference workloads to edge servers.



BACKGROUND

q Edge-Assisted Mobile Vision Analytics
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Frame Offloading Workflow of Edge-Assisted MVA



MOTIVATION

q Characteristics of Integrated Terrestrial and LEO Satellite Network (ITLSN)
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v LEO Internet service provider: Starlink
v Mobile device: Raspberry Pi 4 Model B
v Edge server: rented from the nearest AWS local region to the mobile device 
v TCP throughput measurement tool: IPerf3 utility
v Round-trip time (RTT) measurement tool: Ping utility 

TCP throughput statistics Network latency statistics

Today’s ITLSN still cannot support high-frame-rate offloading, and specialized designs 
are required toward 6G-enabled MVA.



MOTIVATION

q Characteristics of Integrated Terrestrial and LEO Satellite Network (ITLSN)
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Upload throughput variations over time

ITLSN experiences wild 

fluctuations in upload 

throughput. This calls for 

network-aware designs 

for 6G-enabled MVA to 

deliver consistent QoE.



BACKGROUND
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q Edge-Assisted Mobile Vision Analytics with Today’s ITLSN

How to address the network resources challenges of today’s ITLSN to achieve the high-accuracy and low-latency 
performance goals of edge-assisted MVA?

Solution 1: Reduce offloaded frame quality, e.g., by reducing resolution or increasing quantization parameter.

Issues: Still cannot satisfy the stringent per-frame response delay if the network has a high latency, e.g., as in 
ITLSN. Also, the server-side inference accuracy will be reduced due to the degraded image quality.

Solution 2: Periodically or selectively offload representative frames.

Issues: How to compensate the accuracy of unoffloaded frames and how to decide which frames to be offloaded?



SYSTEM DESIGN

q Overview of ITSVA
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SYSTEM DESIGN

q Optical Flow-Based Local Tracker

Motivation: Selective frame offloading is necessary given the scarce and volatile uplink resources of 

today’s ITLSN.

Our Solution: Integrate an optical flow-based local tracker into ITSVA. The algorithm is lightweight 

and can quantify both objects and camera motion.
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Problem: How to compensate the analytics accuracy of unoffloaded frames?

Strawman Solution: Reuse the inference result of the latest offloaded frame?



SYSTEM DESIGN

q DRL-Based Offloading Scheduler

Optimization Goals: The offloading scheduler then tunes the frame offloading interval 𝑙𝑡 to maximize 
the overall accuracy while minimizing the offloaded data amount over the network. 

 
Challenges: (1) Both too large or too small 𝑙𝑡 can lower accuracy. (2) Video content dynamics can influence 

the decision. (3) The choice of 𝑙𝑡 can have cascading influences on that of the subsequent seconds.
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Deep Reinforcement Learning (DRL)-Based Solution:

𝑠! = (𝑛! , 𝑢! , 𝑑!"#, ℎ!"#, 𝛿! , �⃗�!	)

𝑛"	: Historical upload throughput; 𝑢":Mean per−frame offloading delay; 𝑑"#$: Offloading decision vector of the last 
second; ℎ"#$: offloading success vector of the last second; 𝛿": the freshness of locally cached result; �⃗�": most recent 

content dynamics.



SYSTEM DESIGN

q DRL-Based Offloading Scheduler

Methodology: For each input state 𝑠𝑡, the DRL agent selects an action 𝑎𝑡 based on a trained policy 𝜋𝜃 
(𝑠𝑡 , 𝑎𝑡 ) → [0, 1], where 𝜃 is the policy parameter. 

For our problem, the action 𝑎𝑡 corresponds to the offloading interval 𝑙𝑡 .

The policy 𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 ) is represented by a neural network.
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The immediate reward function is defined as follows:
 

𝑟! =	𝛼"𝐴! 	− 	𝛼#𝑂! 	− 𝛼$𝑈!

Overall analytics accuracy 
for all frames captured in 
second t. 

Actual offloaded data size

Unoffloaded rate



EVALUATION

q Evaluation Setup

Best-effort: Offload frames back to back, unaware of the network conditions

Fixed-policy: Offload frames at a fixed interval for all seconds

Rate-adaptive: Dynamically adjust the offloading interval based on the most recent network observations

Primary valuation metrics: accuracy and per-second offloaded data size.
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q Baselines and Metrics:

We design and implement a trace-driven simulator to evaluate the performance of ITSVA. 

Network traces: a large-scale network dataset incorporating 1,200 ITLSN upload traces. Each trace has a 

length of 60 seconds with a granularity of 1 second.

Video dataset: High-quality videos from MOTS dataset (resolution: 1920 x 1080; frame rate: 30 FPS).

Vision task: We focus on the object detection vision task and use a pre-trained YOLOv7-w6 for inference.



EVALUATION

q Evaluation Results
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Performance comparison of different solutions (statistics of all video-trace pairs in the test set)

ITSVA attains the highest overall accuracy with significantly reduced network data transfer overhead. 



EVALUATION

q Evaluation Results
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Performance comparison on different test videos



SUMMARY

Ø Today’s ITLSN still cannot support high-frame-rate offloading, and specialized designs 

are required towards 6G-enabled MVA.

Ø ITLSN experiences wild fluctuations in upload throughput. This calls for network-aware 

designs for 6G-enabled MVA to deliver consistent QoE.

Ø By combining knowledge extracted from current network conditions, video content 

dynamics, and local cache status, ITSVA is able to make rewarding offloading decisions.
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