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Abstract
Streaming videos from resource-constrained front-end devices over
networks to resource-rich cloud servers has long been a common
practice for surveillance and analytics. Most existing live video
analytics (LVA) systems, however, have been built over terrestrial
networks, limiting their applications during natural disasters and in
remote areas that desperately call for real-time visual data delivery
and scene analysis. With the recent advent of space networking,
in particular, Low Earth Orbit (LEO) satellite constellations such
as Starlink, high-speed truly global Internet access is becoming
available and affordable. This paper examines the challenges and
potentials of LVA over modern LEO satellite networking (LSN). Us-
ing Starlink as the testbed, we have carried out extensive in-the-wild
measurements to gain insights into its achievable performance for
LVA. The results reveal that the uplink bottleneck in today’s LSN,
together with the volatile network conditions, can significantly
affect the service quality of LVA and necessitate prompt adaptation.
We accordingly develop StarStream, a novel LSN-adaptive stream-
ing framework for LVA. At its core, StarStream is empowered by
a Transformer-based network performance predictor tailored for
LSN and a content-aware configuration optimizer. We discuss a
series of key design and implementation issues of StarStream and
demonstrate its effectiveness and superiority through trace-driven
experiments with real-world network and video processing data.

CCS Concepts
• Networks→ Network measurement; • Information systems
→Multimedia streaming.
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1 Introduction
Live video analytics (LVA) [2, 13, 21, 43] analyzes online video
data from networked cameras for automated knowledge extraction.
Given the limited resources in front-end cameras [14], the video
data are typically streamed to resource-abundant edge or cloud
servers for real-time analytics [4, 14, 15, 42]. To date, most data have
been carried over terrestrial networks, which have covered much of
the human-inhabited lands and major roads in developed countries.
Yet, despite global efforts to connect the uncovered, unserved, or
underserved populations to the Internet, one-third of the Earth’s
population (around 2.9 billion) remains disconnected [25]. Many
rural and remote areas, crucial for industries such as mining, fishing,
or forestry, have not been covered, or may never be, including places
like Alaska in the USA, northern Canada, and central Australia.
Additionally, terrestrial networks can be vulnerable to disruptions
from extreme weather, natural disasters, or other emergencies.

To bridge this digital gap, recent years have seen the rapid deploy-
ments of space networking, particularly those based on Low Earth
Orbit (LEO) satellites. Compared to geostationary (GEO) satellites
that orbit at 35, 786 km, LEO satellites are much closer to the Earth’s
surface (below 2, 000 km). This proximity significantly reduces the
launch cost as well as the signal travel distance, which further leads
to substantially lower network latency (600+ vs. 25ms [23]). With a
massive number of smaller satellites operating in higher frequency
bands, an LEO satellite constellation provides truly global cover-
age with much higher bandwidth than GEO (e.g., 178 vs. 82Mbps
median download throughput [19]). As a key player in this field,
Starlink has approximately 6, 241 LEO satellites serving at altitudes
of about 550 km up to date [22, 32], with plans to expand to 34, 400
over the long haul [33]. Together, these satellites offer high-speed
and affordable Internet access to 3million subscribers [33], many in
remote areas with no terrestrial access [11, 18, 19], making latency-
and bandwidth-critical LVA anywhere on the Earth possible.1

As the LEO satellite networking (LSN) evolves to provide seamless
global coverage, LVA applications built upon it will accordingly
expand to currently underserved areas, enabling otherwise chal-
lenging services, including disaster response and relief, industrial
site and wildlife monitoring, and maritime surveillance, to name

1Starlink’s coverage has not yet reached polar areas with its current orbit inclina-
tion of about 53◦ , but it is expected to cover these regions in the coming years.

https://doi.org/10.1145/3664647.3680785
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Figure 1: An overview of LSN-enabled LVA.

but a few. Even in urban areas where well-established terrestrial
infrastructures exist, LSN can serve as a resilient alternative or even
the preferred communication method for latency and cost reasons.
For instance, Starlink has recently partnered with cloud providers
to install ground stations (GSs) within or near cloud data centers to
process user data from space directly at the edge of the LSN [6, 11].
The enhanced integration of communications and computing infras-
tructures creates new possibilities for realizing resource-efficient
LSN-enabled LVA.

Recent measurement studies [11, 19, 45] have confirmed the
advantages of LSN over its GEO counterparts and identified its po-
tential in supporting various network-intensive applications, such
as video streaming and cloud gaming [17, 19, 45]. Nevertheless, our
measurements show that LSN exhibits highly asymmetric uplink
and downlink performance2, with the mean download through-
put being more than 10× higher than the upload throughput. The
scarcity of uplink resources poses non-trivial challenges for LVA,
which primarily consumes the upload bandwidth to ship videos
from cameras to remote servers. Furthermore, being susceptible to
environmental factors (e.g., precipitation, cloud cover, and tempera-
ture [11, 18]) and relative satellite motion, LSN demonstrates wildly
fluctuating performance over time. This prevents upper-layer LVA
applications from delivering consistent quality of experience (QoE).

This paper closely examines LSN performance from an end-
user perspective and sheds light on building LVA services over
space networking. We take Starlink as the testbed and discuss the
key issues toward designing StarStream, a high-performance and
analytics-oriented live video streaming framework over LSN. Our
contributions can be summarized as follows:
⋄ Based on commercial LSN and cloud computing offerings, we
conduct a large-scale measurement study to understand the ac-
cess network performance of LSN. In particular, we identify the
scarcity and dynamics of the available uplink resources.

⋄ We further carry out extensive in-the-wild measurements to ex-
amine the achievable LVA performance of the status quo stream-
ingmethod over today’s LSN. Our findings indicate that achieving
high-performance LVA streaming remains a challenge.

⋄ We propose StarStream, a novel LSN-adaptive LVA streaming
framework, to overcome the unique challenges brought by LSN.
Specifically, a Transformer-based network performance predictor
is designed to adapt the encoding group of pictures (GOP) length
to throughput variations while offering throughput predictions
2In this paper, uplink refers to the transmission path of sending data from a piece

of user equipment to a server, while downlink refers to the opposite path.

Table 1: Starlink access network performance (mean ± stan-
dard deviation) between the UE and servers.

Network performance metrics gc-server aws-server

Download throughput (Mbps) 83.4 ± 60.5 110.1 ± 57.5
Upload throughput (Mbps) 8.1 ± 3.3 8.3 ± 3.5
RTT (ms) 46.9 ± 14.4 40.5 ± 16.4

for GOP configuration selection. With the predictions, a content-
aware optimizer is further developed to strike a good balance
between accuracy and latency via configuration optimization.

⋄ Using fine-grained LSN uplink network traces from the real world,
we evaluate the predictor’s performance and verify its advan-
tages over competitors. By integrating real-world collected video
streaming traces, we further examine StarStream’s performance.
Extensive experiments have validated the framework’s effective-
ness and superiority.

2 Starlink Network Access: Background and
Measurements

Figure 1 shows a typical Starlink residential setup, where a router
connects the user equipment (UE) to the LSN, and a dish (antenna)
is responsible for communicating with the LEO satellites. Although
Starlink has embarked on the deployment of inter-satellite links
[30], single bent-pipe communication [11, 18] is still the dominant
mode. For example, our thousands of traceroute records suggest
that most of the communications involve only one bent-pipe (one
ground-space hop and one space-ground hop) along the path to the
destinations, and Starlink tends to serve as an access network to
the Internet.

Given the stringent latency requirements of LVA, we are partic-
ularly interested in Starlink’s access network performance, i.e., the
performance of directly consuming data from space in the proxim-
ity of GSs. This is in contrast to existing measurements on Starlink
Internet access from different global vantage points [11] or from a
single vantage point to access globally distributed servers [18, 19].
As such, we set up two servers near the Starlink GS: one from Ama-
zon Web Services, named aws-server, and the other from Google
Cloud Platform, named gc-server. We tried to make the servers as
close to the LSN (i.e., the Starlink GS) as possible. Specifically, based
on the network latency, servers are rented from the cloud regions
with the minimum mean round-trip time (RTT) to the UE. Both
servers have Gbps bandwidth for inbound and outbound traffic and
will not be the bottleneck in the network performance test. We use
iPerf3 [10] utility to measure the TCP throughput and Ping utility
to measure the RTT. The test is executed every 30 minutes.

Table 1 shows the statistical results of 1,056 tests conducted over
22 days. As shown, the mean network latencies between the UE and
the servers are decent and comparable to recently reported LTE
network results (i.e., 47.6 ± 8.4 ms [9]) but with higher fluctuations.
Moreover, Starlink follows a download-centric design, where the
mean download throughput can be more than 10× higher than the
corresponding upload throughput for both servers. Unfortunately,
LVA differs from traditional human-oriented video streaming ap-
plications in that it uses the uplink rather than the downlink to
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Table 2: The video dataset used in this paper

Video Name
[source link]

Shooting
Scenario

Illumination
Conditions

Object
Speed

Object
Size

hw1 [37] highway sunny high mostly medium
hw2 [39] highway sunny high diverse
street [40] street night low mostly large
beach [41] beach cloudy medium mostly small

transmit heavy and bursty video data. Consequently, accommodat-
ing LVA can significantly challenge Starlink’s asymmetric network
link design. In addition, Starlink’s mean upload throughput (≤ 8.3
Mbps) is dramatically lower than that of LTE (53.4 Mbps), let alone
5G mmWave (52.8-157.7Mbps) [9]. With this upload throughput, it
can be challenging for Starlink to live stream Ultra High-definition
(UHD, 4K or 8K) videos or multiple Full HD (FHD, 1080p) videos si-
multaneously. For example, YouTube’s recommended live streaming
bitrate for a 1080p (4K) video is 3-12Mbps (8-40 Mbps) [38].

We have analyzed the variations in upload throughput across
different days and observed no significant daily patterns. We fur-
ther divided the measurement results into peak hours (7 AM-11
PM) and off-peak hours (11 PM-7 AM) usage and found that, sta-
tistically, Starlink provides better network service during off-peak
hours than during peak hours. For instance, the mean off-peak
upload throughput from the UE to the aws-server is 9.2 Mbps,
considerably higher than that of peak hours (8.1Mbps). When we
took a closer look at the variations over the course of a day, we
found that the upload throughput fluctuates wildly. For example,
it can be as high as 16.5Mbps (15.6Mbps) and as low as 2.2Mbps
(1.9 Mbps) for the gc-server (aws-server) within the same day.
A finer examination revealed that the upload throughput is highly
volatile from second to second. For example, the upload throughput
for both servers can vary from 0 to 18+Mbps within a minute. LEO
satellites move faster relative to the Earth due to their low altitudes,
which means that the communication distance and link quality
between the UE (even a stationary one) and the serving satellite
are constantly changing, and frequent handovers from one satellite
to another are unavoidable [11, 18]. Thus, we hypothesize that the
observed wild performance fluctuations are inherent to the LSN.

3 When LVA meets LSN: A Reality Check
LVA is recognized as a key technical enabler for a wide range of
modern applications, from security surveillance and traffic control
to self-driving cars and augmented reality [2]. It relies on advanced
learning and computer vision algorithms, such as object detection,
semantic segmentation, and human key point detection, to analyze
live camera feeds, enabling machines to locate, track, classify, and
segment video content of interest. The accuracy of LVA is typically
preserved by deep neural network (DNN)-based vision models,
which are known to be resource-intensive. This popularizes LVA
streaming, which involves transmitting live video content from the
capturing camera over networks to an analytics server. This is akin
to the first-mile ingestion phase of the canonical live video stream-
ing setup, where the live content is transmitted from the capturing
device to a streaming server [47]. Real-time messaging protocol
(RTMP) is the state-of-the-practice ingestion protocol utilized by
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Figure 2: In-the-wild LVA performance over Starlink.

mainstream commercial live streaming platforms such as Twitch
[26] and YouTube Live [38], as well as IP cameras [35] for real-time
video upload. Therefore, we use RTMP as the streaming protocol
to explore in-the-wild LVA performance over today’s LSN.

3.1 Measurement Setup
Video dataset. Due to the lack of publicly available video datasets
of high quality, high frame rate, and long duration, we use four
YouTube videos (details shown in Table 2) as the source to create
our video dataset. These source videos cover various scenarios
commonly encountered in LVA applications, such as highways,
urban environments, and rural areas. They also incorporate a broad
spectrum of content characteristics and dynamics. Specifically, for
each video source, we extract a 480-second video clip and configure
the client to read 1080p frames from the clip at a rate of 15 frames
per second (FPS), thereby simulating a scenario where the frames
are being captured in real time by a 1080p, 15 FPS camera.
Client and Server.We choose the aws-server, a p3.2xlarge EC2
instance with an NVIDIA V100 GPU [3], as the analytics server,
and an off-the-shelf desktop as the Starlink UE.
Server-side vision task and model. We consider one basic video
analytics task, object detection, as the server-side analytics task for
proof of concept. In particular, the task is executed by a pre-trained
DNN model, YOLOv8l, from the YOLOv8 family [27].
Methodology. By default, the H.264 codec is employed to compress
raw video frames using a constant bitrate (CBR) encoding scheme,
with a keyframe interval of 2 seconds. We explore target encoding
bitrates of 1.5, 3, 4.5, 6, 7.5, and 9 Mbps, denoted respectively as
B1.5, B3, etc. In addition to the encoding bitrate, LVA accuracy can
also be affected by other encoding parameters, such as resolution
and frame rate. Therefore, we evaluate a series of candidate frame
rates {1, 3, 5, 15} and resolutions {1920×1080, 1280×720, 640×320} for
each target bitrate. We then report the measurement results of the
(frame rate, resolution) combination that yields the highest accuracy.
For implementation, the client uses the FFmpeg C++ libraries [7]
to encode and stream frames at the target bitrate, frame rate, and
resolution. To further minimize the encoding and streaming latency,
we set the encoder to the ultrafast and zerolatency mode [8], where
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Figure 3: In-depth examination of performance influencing factors.

only I-frames and P-frames are encoded. The server also uses the
FFmpeg libraries to listen for stream events, receive streams, and
decode the compressed video packets into uncompressed frames.
Metrics. We consider the following performance metrics.
⋄ Offloading delay (OL delay). This measures the time it takes for
frames to be encoded by the client, transmitted over the network,
and decoded by the server. Specifically, a frame’s offloading de-
lay is the elapsed time from when the client starts encoding the
frame to when it is prepared for analysis on the server. A GOP’s
offloading delay is the duration from when the client starts en-
coding its first frame to when the server finishes decoding its last
frame. The average offloading delay of all GOPs within a video
is considered as the video’s offloading delay.

⋄ Response delay. A GOP’s response delay is the total time elapsed
from when the first frame of a GOP is captured to when the
analysis results of the last frame in the GOP become available. It
includes delays caused by potential queuing, network delivery,
and server-side model inference. The average response delay
across all GOPs within a video is the video’s response delay.

⋄ Normalized end-to-end throughput (E2E TP). Assume that the
entire capture-streaming-analysis pipeline transmits and analyzes
𝑛 frames in 𝑡 seconds, i.e., the time elapsed fromwhen the camera
captures the first frame to when the server finishes analyzing the
𝑛𝑡ℎ frame is 𝑡 seconds. Then, the normalized E2E TP is 𝑛/(𝑡 · 𝑓 ),
where 𝑓 is the frame rate of the stream.

⋄ Accuracy. Following the best practice in previous studies [14, 42],
we regard the detection results of the same model on raw frames
as ground truth to eliminate the inaccuracy caused by the object
detection model itself. Accuracy is then calculated as the F1 score
between the predicted and ground-truth results, as in [42]. A
true positive is accepted when the intersection over the union
between a predicted bounding box and a ground-truth bounding
box is greater than 0.5, and their object categories are the same.

3.2 Measurement Results and Insights
We stream each video under each setting at different times of the
day for more than 10 days. For all settings, the mean frame encoding
delay on the client is about 15.83 ms, and the mean frame decoding
delay on the server is about 3.73 ms. The server-side model infer-
ence delay for the highest resolution (i.e., 1920×1080) is about 62.01
ms on average. This means that the frame encoding, decoding, and
model inference can all run at a speed exceeding 15 FPS, i.e., the
maximum frame rate. Thus, any delays affecting real-time analytics
can be primarily attributed to network transmission.

Figure 2 presents the statistical results of 20 trials conducted in
the wild for each video-setting pair. As the offloading delay sub-
figure suggests, higher streaming bitrates introduce higher delays

during network transmission. When the streaming bitrate exceeds
the capacity of the LSN, the offloading delay becomes the latency
bottleneck in the entire processing pipeline. This makes it struggle
to keep up with the frame arrival rate, leading to progressively
accumulating lags. These lags eventually result in exponentially
increasing response delays. Overall, it is still challenging for the
LSN to support real-time LVA streaming (i.e., normalized E2E TP is
1.0) at bitrates higher than 6Mbps. While meeting real-time require-
ments at low to medium bitrates seems promising, the resulting
analytics accuracy can be significantly compromised. As a result,
simultaneously achieving the low latency and high accuracy goals
of LVA remains an open problem over today’s LSN.

Another observation from Figure 2 is that the delay-related met-
rics vary significantly across multiple trials under identical stream-
ing settings. For example, the response delay of video hw2 under
setting B6 can be 2.49 seconds in one trial and 48.10 seconds in an-
other, indicating a performance difference of 19.32×. Since the only
variable between the trials is the underlying network conditions,
this observation reveals the significant influence of the LSN perfor-
mance on LVA-perceived QoE. This calls for LSN-adaptive streaming
solutions for LVA applications to provide consistent QoE. Figure 3a
further details the GOP offloading delay variations observed in
these two trials. As shown, the offloading delay remains stable with
only occasional small fluctuations under the good network condi-
tions, suggesting that a coarse-grained adaptation strategy may be
adequate. In contrast, under the poor network conditions, the of-
floading delay fluctuates wildly and frequently, necessitating a more
nuanced, fine-grained adaptation approach. These findings uncover
the challenges inherent in application-level LSN adaptation and
motivate the design of granularity-variant adaptation strategies.

GOP is the natural encoding unit for bitrate control and network
adaptation, given its self-contained structure. We thus fix all the
other variables and vary only the GOP length to investigate its im-
pact on accuracy. Figure 3b shows that for the same target encoding
bitrate, increasing GOP length can improve the analytics accuracy,
and the improvements are particularly obvious for low target bi-
trates. We identify that this is because a shorter GOP results in a
higher frequency of I-frames. For a given bitrate budget, the codec
has to increase the mean quantization parameter to accommodate
more relatively large I-frames, ultimately leading to diminished
overall image quality that adversely affects accuracy. Additionally,
since a P-frame has to wait for its reference frame to arrive before
it can be decoded at the server, the large size of an I-frame affects
not only its own offloading delay but also the offloading delay of
its subsequent P-frames as shown in Figure 3c. This observation
encourages the adoption of longer GOP lengths, when network
conditions permit, to benefit both accuracy and delay stability.



StarStream: Live Video Analytics over Space Networking MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Camera
buffer

Video
profiler

Throughput and
shift predictor

Streaming
controller

Buffer
status

Observed
network

conditions

Up-to-date
config.

performance

Client Raw frames

Streaming
controller

Vision model

Analytics server

Decoded
frames

Inference
results

Downstream
tasks or

interested
authorities

Chosen GOP
length & config.

Shift-guided
configuration

optimizer

Predicted
network

conditions

C
o
m
p
r
e
s
s
e
d
 
f
r
a
m
e

p
a
c
k
e
t
s

Figure 4: Overview of StarStream.

4 Toward LSN-Adaptive LVA Streaming
Inspired by our measurement insights, we propose StarStream,
a novel adaptive LVA streaming framework specifically designed
for LSNs. Figure 4 presents an overview of StarStream, where the
client continually streams captured frames over LSN to an analytics
server. The client adapts video encoding GOP lengths and other
configurations, such as bitrate, to the dynamic uplink network
conditions for both accuracy and latency optimization. The core
adaptation component is the shift-guided configuration optimizer,
which decides how to encode and stream incoming video content
according to predicted network throughputs and their shifts, up-to-
date configuration performance, and camera buffer status, to strike
a balance between accuracy and latency.

Specifically, the future network conditions are derived from the
throughput and shift predictor, which predicts not only the future
upload throughputs but also the timing of significant changes in
throughput. The up-to-date configuration performance is estimated
based on the information provided by the video profiler, which esti-
mates the reference configuration performance by offline profiling
representative frames and captures recent content characteristics
by online compact model inference. The camera buffer status is ob-
tained by querying the camera buffer, which caches captured video
frames that cannot be promptly transmitted due to poor network
conditions. After the shift-guided configuration optimizer makes the
encoding configuration decision, the streaming controller compo-
nent will encode and stream the corresponding frames according
to the chosen GOP length and configuration.

4.1 LSN Uplink Performance Prediction
Network throughput prediction serves as a foundational step in
building network-adaptive multimedia applications. A multitude
of throughput predictors based on historical observations (e.g.,
harmonic mean [36] and moving average [15]), classical machine
learning models (e.g., decision tree [16] and random forest [1]),
or deep learning models (e.g., fully connected network [34], long
short-term memory [12], and Seq2seq [20]), have been developed
for various terrestrial networks.

Compared to terrestrial networks, throughput prediction for LSN
is much more challenging due to its inherent characteristics, e.g.,
vulnerabilities to exogenous factors. Recent years have witnessed
the success of time series prediction models based on Transformers
[28], which have outperformed other time series predictionmethods
in various domains [31]. Their strengths in capturing long-term

dependencies, modeling complex temporal interactions, and easily
incorporating external information align well with the properties
of an ideal uplink performance predictor for LSN. As a result, we
propose a Transformer-based throughput and shift predictor to fully
utilize the uplink resources of LSN while mitigating its challenges.
In particular, the predictor’s design is based on Informer [46], an
efficient Transformer-based time series forecasting model, but with
unique designs tailored to the characteristics of LSN.

Given the notable instability in LSN’s uplink performance, un-
derstanding the timing of significant throughput changes can help
make judicious decisions. For instance, if the throughput is pre-
dicted to remain stable in a future time horizon, we can choose a
long GOP length to enhance accuracy. Conversely, if the through-
put is expected to experience frequent variations, we can choose a
short GOP length to allow for flexible configuration adjustments at
GOP boundaries, thereby accommodating fine-grained throughput
variations. As such, aside from a throughput prediction head, the
proposed predictor also integrates a shift prediction head, as shown
in Figure 5. Formally, let 𝑏𝑡 denote the throughput at time step 𝑡 . We
define that a throughput shift occurs at time step 𝑡 if the difference
between 𝑏𝑡 and 𝑏𝑡−1 is greater than a predefined threshold 𝛿 . The
shift prediction head then outputs a binary shift indicator for each
future time step, indicating whether a throughput shift is expected
to occur. Both prediction heads are attached directly to the output
layer of the Informer decoder.

As Figure 5 shows, the proposed predictor takes a sequence of
network observations and their corresponding timestamps from
time step 𝑡 −𝑚 + 1 to 𝑡 as input, to predict the future network
performance from time step 𝑡 + 1 to 𝑡 +𝑛. Specifically, the Informer
encoder receives the entire input sequence, while the decoder’s
input is crafted by concatenating two sequences: one is a subse-
quence of the input sequence, starting from time step 𝑡 − 𝑝 + 1 to
time step 𝑡 (where 𝑝 ≤ 𝑚), and the other is the target sequence to be
predicted, where unknown values are padded with zeros. Note that
unlike traditional encoder-decoder style models that recursively
generate the output for each time step one at a time, the decoder
generates outputs for all time steps at once in a generative way.

In addition to the positional embedding that encodes the rel-
ative position information within the input sequence, the input
to the predictor also integrates the outputs of the following three
embedding layers. 1) Observable variables (OV) embedding layer:
This layer embeds observable variables for network performance
prediction. Apart from the historical observations of throughput
and its shifts, we also consider variables related to the underlying
TCP connection, such as the retransmit times, the sending con-
gestion window size, the smoothed RTT estimate, and the RTT
variation, given their proven effectiveness in throughput prediction
[16, 34]. 2) Date embedding layer: Our measurements confirm that
the wall-clock time can have certain influences on the LSN network
performance (recall the peak and off-peak hours performance in §2).
Consequently, the date embedding layer is introduced to encode
the global time information. 3) Handover embedding layer: Starlink
schedules satellite-UE associations every 15 seconds, suggesting
that handovers may occur as frequently as every 15 seconds [5, 24].
To account for the potential influence of handovers on network
performance, a handover embedding layer is used to encode the
current second’s position in the 15-second scheduling window.
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Figure 5: Architecture of the proposed predictor.

4.2 Shift-Guided Configuration Optimization
GOP Length Selection. In our problem, the GOP length determines
the encoding and decision-making granularity. Instead of setting the
GOP length to a fixed value, StarStream’s configuration optimizer
dynamically adjusts the GOP length under the guidance of the
predicted throughput shift indicators. For instance, assume that
the interval between two consecutive time steps is one second, and
the lookahead window size 𝑛 is 3. If the predicted throughputs and
shift indicators are [𝑏𝑡+1, 𝑏𝑡+2, 𝑏𝑡+3] and [0, 0, 1], respectively, the
chosen GOP length for the next GOP will be 2 seconds, and the
corresponding predicted throughput for the GOP will be calculated
as (𝑏𝑡+1 +𝑏𝑡+2)/2. Then, with the chosen GOP length and the mean
predicted throughput, the optimizer further chooses the encoding
configuration (e.g., bitrate) for the GOP.
Problem Formulation. The performance goals of configuration se-
lection are to maximize the analytics accuracy and minimize the lag,
where lag is defined by the amount of queued-up frames that wait
to be processed [43]. Without loss of generality, we assume that
for the entire “capture-encoding-transmission-decoding-inference”
processing pipeline, the primary cause of lag is network trans-
mission. In continuous streaming scenarios, if the system’s E2E
processing speed can keep up with the frame capture speed, there
will be no lag; otherwise, the newly captured frames will queue
up at the camera buffer, resulting in an accumulation of lag. We
then quantify the lag using the camera buffer queue length and
formulate the performance optimization problem from GOP 𝑘1 to
GOP 𝑘2 (𝑘1 ≤ 𝑘2) as follows:

argmax
𝑐𝑘1,· · · ,𝑐𝑘2

∑︁𝑘2
𝑘=𝑘1

𝛼𝐴𝑘 (𝑐𝑘 ) − 𝛽𝑄𝑘

𝑠 .𝑡 .



𝑏𝑘 = 1
𝑡𝑘−𝑡𝑘−1

∫ 𝑡𝑘
𝑡𝑘−1

𝑏𝑡 𝑑𝑡

𝑡𝑘 = 𝑡𝑘−1 +
∑

𝑗 𝑒 𝑗 (𝑐𝑘 ) +
∑

𝑗 𝑑 𝑗 (𝑐𝑘 )
𝑏𝑘

+ Δ𝑡𝑘

𝑄𝑘 = 𝑄𝑘−1 + (𝑡𝑘 − 𝑡𝑘−1) − 𝐿𝑘

𝑐𝑘 ∈ C, ∀𝑘 = 𝑘1, · · · , 𝑘2

(1)

where 𝐴𝑘 (𝑐𝑘 ) is the server-side analytics accuracy for GOP 𝑘 en-
coded with configuration 𝑐𝑘 . 𝑄𝑘 is the camera buffer queue length
(in seconds) when the client finishes transmitting the last frame in
GOP 𝑘 . 𝛼 and 𝛽 are positive weighting parameters used to trade off
accuracy against lag. 𝑡𝑘 denotes the time when the client finishes
transmitting the last frame of GOP 𝑘 . 𝑒 𝑗 (𝑐𝑘 ) and 𝑑 𝑗 (𝑐𝑘 ) are the
encoding delay and the compressed frame size of the 𝑗𝑡ℎ frame in
GOP 𝑘 encoded with configuration 𝑐𝑘 , respectively. Note that in
live streaming scenarios, frames are compressed and transmitted
sequentially as they are captured. This means that the frame com-
pression cannot be completed in advance; instead, compression
and transmission occur in an interleaved manner. 𝑏𝑘 is the aver-
age upload throughput between 𝑡𝑘−1 and 𝑡𝑘 . Δ𝑡𝑘 denotes the total
wait time between 𝑡𝑘−1 and 𝑡𝑘 . A wait can happen when the frame
upload speed is faster than the frame capture speed, and the client
has to wait for the next frame to arrive to resume processing. 𝐿𝑘 is
the chosen GOP length, and C is the candidate configuration set.
Content-Aware Configuration Performance Estimation. Since
we use CBR encoding for video streaming [38], the data sizes and
encoding delays of GOPs with the same length and configuration
will not have significant differences. Thus, the video profiler compo-
nent estimates 𝑒 𝑗 (𝑐𝑘 ) and 𝑑 𝑗 (𝑐𝑘 ) by offline profiling representative
video content. The key challenge here is estimating 𝐴𝑘 (𝑐𝑘 ), which
is known to be related to video content dynamics. Existing solutions
tend to combine offline and online profiling to adapt to changing
video content [42]. However, online profiling requires sending raw
frames to the server to acquire the ground truth results for accuracy
calculation. This places a heavy burden on network transmission,
preventing its practical use in LSNs with scarce uplink resources.

Let 𝐴(𝑐) denote the offline profiled accuracy of configuration
𝑐 . As the video content varies, using 𝐴(𝑐) to estimate the actual
configuration accuracy may result in either an overestimate or an
underestimate, depending on the relative analysis difficulty of the
current content compared to the offline profiled content. The imme-
diate consequence of such inaccurate estimates on our optimization
objective is that they bias the accuracy-lag tradeoff and configu-
ration comparisons. Our workaround is to define a proxy for the
relative content analysis difficulty, namely 𝛾 , and use it to scale𝐴(𝑐),
thereby minimizing bias. Specifically, when the current content be-
comes more difficult to analyze than the profiled content,𝛾 will take
on a value greater than 1, increasing the accuracy gaps between
configurations and placing greater emphasis on accuracy relative
to lag. Conversely, when the current content is easier to analyze, 𝛾
will be less than 1. The rationale is as follows: for easy-to-analyze
content, the accuracy gaps between different configurations are
small, while for challenging content, the gaps are significant.

To update 𝛾 , the video profiler runs a compact model (YOLOv8n
by default) online to periodically analyze newly captured frames.
The analysis difficulty of new content is then inferred from the
confidence scores output by the compact model. Intuitively, if the
content is harder to analyze, there will be more detections with
low confidence scores, indicating that more information is needed
to ensure high accuracy. Specifically, a detection is considered un-
certain if its confidence score is lower than 0.5. We then define an
uncertainty metric 𝑢, calculated as the ratio of the number of un-
certain detections to the total number of detections. Let 𝑢𝑛 denote
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the uncertainty of new content and 𝑢𝑝 denote the uncertainty of
the profiled content. With new content analyzed by the compact
model, 𝛾 is accordingly updated as 𝑢𝑛/𝑢𝑝 .
Configuration Optimization to Balance Accuracy and Lag.
Since the camera captures frames at a constant frame rate, the
future frame capture times can be known in advance. Consequently,
once the future upload throughputs and video-related variables are
determined, Δ𝑡𝑘 can also be determined. This makes us ready to
solve Problem (1). However, as relatively accurate predictions can
only be guaranteed for a short future time horizon, the optimizer
solves the problem over a finite time horizon (3 GOPs by default),
following the model predictive control (MPC) [34, 36] paradigm.

In practice, evaluating every possible combination of frame rate,
resolution, and bitrate can significantly prolong the online config-
uration optimization time. Fortunately, we analyzed the accuracy
variations of all configurations and found that for all given bitrates,
the best-performing (frame rate, resolution) combination is always
one of three candidates, and their overall accuracies are very simi-
lar for a given bitrate. Considering the additional communication
cost of changing the frame rate and resolution in the middle of
the stream, we propose a profiling-based configuration pruning
method. Using the offline profiling results provided by the video
profiler, it simply selects the (frame rate, resolution) combination
that most frequently hits the top-3 performance under all candidate
bitrates as the frame rate and resolution for online streaming. As
such, the optimizer only needs to choose the bitrate for each GOP
online. We further design an efficient dynamic programming (DP)
algorithm to solve the optimization problem.

5 Evaluation
5.1 Evaluation of Network Predictor
Network Traces. We collected real-world LSN upload traces with
the same client and server setup introduced in §3.1. The dataset
comprises 504 network traces measured from two different geo-
graphical locations, collected at different times over 17 days across
two years and covering various weather conditions. Each trace has
a duration of 10 minutes with a granularity of 1 second, including
timestamps, upload throughput, and TCP connection information.
We also added a shift column to indicate whether a shift occurs,
with 𝛿 set to 2.5 Mbps. The dataset is randomly divided into a
training set (70%), a validation set (10%), and a testing set (20%).
Baselines. We consider the following methods: harmonic mean
(HM), moving average (MA), random forest (RF), fully connected
network (FCN), long short-term memory (LSTM), and Seq2seq.
Since these methods are designed to only predict the throughput,
we calculate the throughput shift indicators by differencing the
predicted throughputs and then comparing the differences to 𝛿 .
Evaluation metrics. We use Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), Mean Absolute Percentage Error
(MAPE), and R-Squared (R2) to evaluate throughput prediction,
while using Accuracy and F1 score for shift indicator prediction.
For MAE, RMSE, and MAPE, smaller values are better, while larger
values are better for the other metrics.
Result Analysis. Table 3 presents the performance of different
predictors, where the context sequence length 𝑝 of our method is
15. As shown, there exists a large performance gap between the two

Table 3: Comparison of different network predictors (look-
back window size𝑚 = 60; lookahead window size 𝑛 = 15) .

Methods
Throughput Shift indicator

MAE RMSE MAPE R2 Accuracy F1

HM [36] 4.019 5.275 57.095 −0.709 0.670 0.074
MA [15] 3.166 4.045 52.173 −0.005 0.671 0.065
RF [1] 2.577 3.388 42.695 0.295 0.682 0.025
FCN [34] 2.493 3.302 41.042 0.330 0.684 0.040
LSTM [12] 2.472 3.281 40.513 0.339 0.684 0.041
Seq2seq [20] 2.463 3.274 40.383 0.342 0.685 0.053
Ours 2.435 3.248 39.244 0.352 0.706 0.467

naive prediction methods (i.e., HM and MA) and the other methods.
This implies that simple models relying on historical throughput in-
formation can hardly capture the complex variations in LSN upload
throughput. RF, FCN, and LSTM are able to capture the complex re-
lationships between input features and hit competitive performance.
However, they treat the throughput at different future time steps
equally as output features to be predicted and may not fully exploit
the temporal relationships between multi-step outputs. Seq2seq
overcomes this deficiency by using a decoder to recursively predict
the output at each time step and achieves better performance.

Our predictor achieves the best performance on all evaluation
metrics. This can be attributed to the introduction of the attention
mechanism and embeddings of exogenous information. Addition-
ally, the performance of using predicted throughputs to estimate
the throughput shifts is notably worse. We find the reason is that
prediction models tend to generate smoothed multi-step through-
put forecasts, which renders the shift indicator rarely equal to 1. In
practical deployments, continual learning [29] can be integrated
into our framework to maintain the predictor’s performance as
network conditions evolve.

5.2 Evaluation of StarStream
Methodology.Weuse the videos shown in Table 2 for StarStream’s
performance evaluation. We consider the same frame rate, reso-
lution, and bitrate candidates as in §3.1, and 5 GOP length can-
didates: {1, 2, 3, 4, 5} seconds. In the offline stage, the video pro-
filer profiles the first 20-second of each video to obtain each con-
figuration’s performance and processing costs (including encod-
ing/decoding/inference delays and compressed frame sizes). Then,
it selects the streaming frame rate and resolution for each video
based on the proposed pruning method. 𝛾 is updated every 30 sec-
onds online by profiling 5 seconds of newly captured video content.
For a fair comparison, we implement a trace-driven simulator based
on the test network traces introduced in §5.1 and video processing
traces collected offline. Specifically, we encode and stream each
video with different configurations and GOP lengths from the client
to the server (same as that in §3.1), while recording the correspond-
ing compressed frame sizes, encoding delays, decoding delays, and
inference delays, to construct the video processing traces dataset.
The traces for the same video are well aligned to facilitate flexi-
ble GOP and configuration switching during the online stage. By
default, 𝛼 and 𝛽 in Problem (1) are set to 1 and 0.02, respectively.
Baselines. All of the baselines use a fixed GOP length of 2 seconds.
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Figure 6: Overall performance of different solutions. The CDF figures show statistics on all video-trace pairs.

⋄ Fixed: This non-adaptive solution streams videos at a fixed
bitrate, selected as the highest bitrate that is below the mean
throughput observed 1 minute before the streaming begins.

⋄ AdaRate: This is a pure rate-based adaptive streaming solution. It
employs the same network predictor as StarStream but simply
chooses the maximum bitrate below the predicted throughput.

⋄ MPC: It uses MPC [34, 36] to optimize the objective of Problem (1)
over 3 future GOPs. The future throughputs are estimated using
harmonic means of past 5 GOPs. The video-related variables are
estimated by offline profiling the first 20-second video content.

Performance Metrics. We consider the accuracy, normalized E2E
TP, OL delay and response delay defined in §3.1 as the metrics. Note
that since different videos can be streamed at different frame rates
and the GOP length can also change within a stream, the OL delay
and response delay in this evaluation are uniformly defined for
per-second video content, rather than for per frame or GOP.
Performance Improvement. Figure 6 shows the overall perfor-
mance of different methods. As shown, Fixed cannot achieve real-
time E2E processing (i.e., normalized E2E TP is 1.0) for most video-
trace pairs because this rigid method cannot adapt to the ever-
changing network conditions. In comparison, AdaRate improves
the overall normalized E2E TP, OL delay, and response delay by
dynamically adjusting each GOP’s bitrate based on the predicted
network throughput. Yet, it inevitably suffers from performance
degradation due to imperfect predictions. Also, it has nomechanism
to automatically recover from the previously made bad decisions,
which can lead to accumulated lags that eventually reduce the
throughput and increase delays. By integrating the network pre-
dictions along with the camera buffer queue status, both MPC and
StarStream achieve near real-time E2E processing for almost all
video-trace pairs. By strategically optimizing over multiple future
GOPs to balance accuracy and lag, these methods can timely re-
cover from previously made bad decisions and control the response
delays within a reasonable range (i.e., < 10 seconds). StarStream
further benefits from the more flexible GOP length configuration
and more accurate configuration accuracy estimation, achieving
noticeable accuracy improvements over MPC.
Ablation Study. We consider two variants: one disables the 𝛾

updates, named V1, and the other replaces the network predic-
tor with a Seq2seq predictor, named V2. We find that, compared
to StarStream, the mean response delay of V1 increases by 8.6%
while the accuracy remains almost the same, and the mean response
delay of V2 increases by 10.1% while the mean accuracy decreases
from 0.867 to 0.864. V1 is unaware of configuration performance
fluctuations caused by varying video content and misses many
opportunities to choose a low-latency configuration with decent

accuracy. V2 cannot accurately predict when throughput shifts will
happen and tends to choose longer GOP lengths that cannot adapt
to second-to-second throughput variations. This is exacerbated by
less accurate throughput predictions, leading to sub-optimal config-
uration choices. This confirms the effectiveness of StarStream’s
key components.
System Overheads. The system overheads primarily stem from
the predictor, the DP algorithm, and the online content profiling.
We benchmark these overheads using our measurement client,
equipped with a 6-core Intel i7-6850K CPU and an Nvidia GeForce
GTX 1080 Ti GPU. Notably, the DP algorithm is highly efficient,
solving the problem in just 0.63 ± 0.35 ms on the CPU. Profiling
5-second raw frames on the GPU takes about 1.44 seconds, and the
fast profiling speed ensures that the profiled video content is fresh.
The inference delay of the predictor on the GPU is about 13.0 ± 5.1
ms, which is insignificant, especially given that network prediction
and video streaming can be conducted in parallel in our design.

6 Related Work
Shipping video data over networks for real-time online analytics
has been a hot research topic in recent years [13–15, 21, 42, 44]. To
handle the tremendous bandwidth requirements, various content-
driven, model-driven, and compression-driven strategies have been
proposed to reduce network data transfer without significantly
compromising accuracy. These strategies include controlling video
encoding parameters (e.g., resolution) [42], frame filtering [14],
frame masking [15], and frame partitioning [44]. While promising,
most of them prioritize reducing network consumption over net-
work adaptation since they are designed for relatively stable terres-
trial networks where adaptation is not always necessary. Network-
adaptive streaming solutions like AWStream [42] exist but rely on
simple network probing and bandwidth estimationmethods that are
insufficient for LSNs. In contrast, the core designs of StarStream
are network-driven, and to the best of our knowledge, it is the first
attempt to bridge the gap between LSNs and existing LVA solutions.

7 Conclusion
This paper closely investigated the performance of emerging LSNs
in supporting LVA applications. Through extensive measurements,
we found that the uplink resources of today’s LSNs are still scarce,
and their wild network performance fluctuations can prevent upper-
level LVA applications from providing consistently satisfactory
QoE. We further proposed a novel adaptive LVA streaming frame-
work, StarStream, to improve the performance of LSN-enabled
LVA applications. Extensive trace-driven experiments verified the
effectiveness and superiority of our proposed solution.
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