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Abstract—The sixth-generation (6G) mobile communications
system is expected to integrate the terrestrial and low Earth orbit
satellite networks (LSN) to provide seamless global Internet ser-
vice. This will create new opportunities for edge-assisted mobile
vision analytics (MVA), which offloads frames over networks to
edge servers for analysis, thereby overcoming the local compu-
tational resource constraints. With the integrated terrestrial and
LSN (ITLSN), edge-assisted MVA can reach its full potential
in remote and maritime areas. Nevertheless, the proximity of
LEO satellites to the Earth is a double-edged sword. It offers
benefits in latency and data rates but also brings challenges like
frequent satellite handovers and volatile channel conditions. To
demystify the in-the-wild performance of ITLSN, we carry out
large-scale measurements with a major LSN service provider.
The measurement results confirm the highly asymmetric and
dynamic network performance of today’s ITLSN, which can
present non-trivial challenges for MVA frame offloading. We
thus propose an ITLSN-adaptive MVA offloading framework,
ITSVA, to address the inherent dynamics brought by network
conditions, video content, and the offloading strategy. Extensive
trace-driven simulation experiments are further conducted to
verify the effectiveness of ITSVA.

Index Terms—mobile vision analytics, LEO satellites, 6G

I. INTRODUCTION

Mobile vision analytics (MVA) [1]–[4], which enables ma-
chines to understand the physical world by analyzing videos
captured by mobile devices in real time, is a critical technical
enabler to realizing emerging extended reality (XR) applica-
tions. By analyzing video content with deep neural network
(DNN) based vision models, MVA can help bridge the gap
between the physical and virtual worlds. For instance, object
detection models [5] can locate and classify objects appearing
in the field of view of a camera, thus providing a better sit-
uational awareness; human keypoint detection models [6] can
identify and locate keypoints or landmarks on a human body
within an image or video frame, enabling better interaction
between humans and virtual objects. Given the constrained
computational resources and heat dissipation issues of mobile
devices, existing MVA systems tend to offload heavy DNN
inference workloads to edge servers so as to meet the stringent
latency and tremendous resource demands [1], [7], [8].

Unfortunately, almost all edge-assisted MVA systems trans-
mit video data over terrestrial networks, substantially limiting
the potential in remote and maritime areas. The next generation

of mobile system standard, 6G, is expected to integrate mega-
constellations of low Earth orbit (LEO) satellites with terres-
trial networks to provide seamless broadband Internet services
[9], opening up exciting opportunities for edge-assisted MVA.
Compared to their geosynchronous Earth orbit and medium
Earth orbit counterparts, LEO satellites are much closer to the
Earth, with altitudes typically below 2, 000 km. This proximity
dramatically reduces signal travel distance, resulting in lower
communication latency and higher data rates. For example,
one major LEO broadband service provider, SpaceX Starlink,
promises a latency of 25-60 ms and a download speed of
25-100 Mbps in the standard service plan.1 The low latency
and higher data rate make the integrated terrestrial and LEO
satellite network (ITLSN) a potential fit for MVA applications
in currently underserved areas.

As the LEO satellite network (LSN) evolves to global cov-
erage, the ITLSN will seamlessly connect anyone, anywhere
on the planet. This will also expand the reach of edge-assisted
MVA applications to a broader audience. For example, tourists
and adventurers will have access to augmented reality (AR)
guides in remote and wilderness areas for a fun experience and
improved safety. Global mobile users will be able to engage
in diverse collaborative XR games, whether they are travelling
on high-speed trains, flying in planes, or sailing on the ocean.

Despite the huge potential, it can be challenging for today’s
LSN to support efficient MVA offloading. First, inheriting the
download-centric design principle of previous generations of
mobile networks, LSN offers highly asymmetric performance,
with the mean download throughput about 13.3× higher than
the mean upload throughput according to our measurements.
This is disadvantageous to edge-assisted MVA, which relies
on uplink resources to stream high-quality frames to the edge
server for analysis [3], [8]. Moreover, due to their low orbital
altitudes, LEO satellites have a small coverage area and move
faster than the Earth, causing frequent satellite handovers that
drastically impair the network performance stability. This is
further exacerbated by the fact that the LSN is more prone
to be affected by various environmental factors (e.g., precip-
itation and temperature) [10]. Therefore, the ITLSN exhibits

1https://www.starlink.com/legal/documents/DOC-1400-28829-70,
[Online; accessed Sep 20, 2023]



highly volatile network performance. For example, according
to our observations, the upload throughput can fluctuate wildly
between 27.6 Mbps and 2.6 Mbps within a minute.

In an ideal edge-assisted MVA scenario, the offloading
delay of a frame should not be greater than a frame playback
duration with the intent to maintain the post-processing and
rendering at the capture frame rate. Yet, the scarce upload
bandwidth of today’s ITLSN makes high frame rate offloading
an elusive goal. Periodically offloading at a fixed frame inter-
val is also likely to suffer from the volatile uplink performance
of the ITLSN, incurring unacceptable delays in the offloading
pipeline. As such, network-adaptive offloading solutions that
dynamically tune the offloading interval can be necessary.

However, adapting the frame offloading interval to the
ITLSN’s uplink conditions is not an easy job. A small of-
floading interval may cause network congestion and delay the
offloading pipeline, ultimately rendering the returned remote
inference result outdated. Nonetheless, a large offloading inter-
val can also make the post-processing and rendering process
persistently use stale analysis results. To make things worse,
the performance of an offloading interval is also influenced
by video content dynamics and the setting of the previous of-
floading intervals. Accurate network prediction can be helpful
for the offloading interval setting. That being said, influenced
by a variety of unobservable internal and external factors, e.g.,
unpredictable weather conditions, accurate uplink performance
prediction of the ITLSN is hard to achieve.

In this paper, we propose a novel framework, called ITSVA,
to address the challenges brought by the inherent dynamics of
6G-enabled MVA. Specifically, ITSVA achieves high accuracy
and low network overhead through fine-grained network and
video content adaptation. The main contributions of this paper
can be summarized as follows.
• By conducting extensive in-the-wild measurements with a

real-world setup, we reveal the uplink characteristics of to-
day’s ITLSN and further identify the key challenges toward
building high-performance 6G-enabled MVA systems over
the ITLSN.

• We propose ITSVA, an ITLSN-adaptive MVA offloading
framework that can achieve both high accuracy and low
network data transfer overhead. Particularly, ITSVA utilizes
an optical flow-based local tracker to boost the accuracy
when the remote inference results are unavailable. It also
integrates a deep reinforcement learning (DRL) agent to
make fine-grained frame offloading decisions that take into
account the network variations, video content dynamics, and
previous decisions.

• We collect large-scale ITLSN uplink network traces from
the real world and design a trace-driven simulator to eval-
uate the performance of ITSVA. The results of extensive
experiments show that ITSVA can achieve higher accuracy
with lower network overhead than representative baselines.

II. BACKGROUND AND MOTIVATION

In this section, we first provide a brief background in-
troduction of edge-assisted MVA. We then investigate the
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Fig. 1: Frame offloading workflow of edge-assisted MVA.

performance characteristics of today’s ITLSN through large-
scale in-the-wild measurements.

A. Edge-Assisted Mobile Vision Analytics

Fig. 1 shows a typical frame offloading workflow of edge-
assisted MVA, where frames are offloaded to the edge server
for analytics as they are captured by the mobile device camera.
The edge server processes the offloaded frame with the vision
DNN model and sends the inference results back to the
mobile device for post-processing or rendering. Ideally, the
entire offloading pipeline can run in real time, i.e., the mobile
device can obtain the remote inference result of the frame 𝐹𝑖
before the capture of the next frame 𝐹𝑖+1 [3]. In this case,
the per-frame offloading latency should not exceed 33.3 ms
for a camera recording videos at a frame rate of 30 FPS.
Although state-of-the-art vision models can run at a higher
frame rate than 30 FPS [5] on a typical data center GPU,
the network delays of transmitting high-quality frames will
become the pipeline latency bottleneck, especially when the
network conditions between the mobile device and the edge
server are poor. If the frame offloading pipeline is delayed, the
offloaded frame and its subsequent frames will have no choice
but to use the stale inference result, which can significantly
lower the overall accuracy.

A number of solutions have been proposed to address the
network resource challenges of achieving the dual performance
goals of low latency and high accuracy in edge-assisted MVA.
Some strategies attempt to reduce the offloaded data size by
applying video or image compression algorithms on the frames
[1]. However, the reduced frame resolution or degraded image
quality caused by various lossy compression algorithms can
hurt the accuracy of server-side vision model inference. Others
concentrate on periodically offloading frames to reduce the
network data transfer overhead while utilizing diverse on-
device approaches (e.g., compressed DNN models or local
trackers) to compensate for the accuracy of the unoffloaded
frames [3]. Nonetheless, determining when and which frames
to offload for overall performance optimization remains an
ongoing challenge.

B. Characteristics of ITLSN

To gain a deep understanding of the in-the-wild performance
of ITLSN, we perform large-scale measurements with Starlink.
We use a Raspberry Pi 4 Model B as the mobile device and
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Fig. 2: Characteristics of integrated terrestrial and LEO satellite network (SpaceX Starlink as a case study).

rent the edge server from the nearest AWS data center to the
mobile device. With this setup, we use the iPerf3 utility
to measure the TCP upload and download throughput and the
Ping utility to measure the round-trip time (RTT).

Fig. 2a and Fig. 2b demonstrate the statistical results over
more than one thousand tests from different times of the day.
Each test lasts for 10 seconds. As can be seen, although the
mean download throughput achieves around 110 Mbps, the
mean upload throughput is only about 8.3 Mbps, and 16.2%
of the tests have an upload throughput even lower than 5 Mbps.
The relatively low upload throughput of ITLSN indicates that
transferring frames from mobile devices to edge servers may
cause significant delays in the offloading pipeline. Moreover,
the mean RTT of all tests is about 40.5 ms. Unfortunately, such
a network latency cannot support a 30 FPS camera offloading
each frame back to back in real time. This suggests that today’s
ITLSN still cannot support high frame rate offloading, and
specialized designs are needed for 6G-enabled MVA.

We also collected longer upload network traces with a one-
second granularity. Fig. 2c displays the upload throughput
variations of three traces. As shown, the upload throughput of
the ITLSN fluctuates dramatically over time. For instance, the
upload throughput of trace-3 can vary wildly from 27.6 Mbps
to 2.6 Mbps within one minute. Also, the upload throughput
fluctuations are somewhat random, with no apparent daily
patterns observed (e.g., tace-1 and trace-2). When the network
conditions are poor, it is likely to observe service outages
where the throughput drops to 0, e.g., from second 242 to
second 244 of trace-2. Compared to other types of networks,
ITLSN experiences more frequent serving satellite handovers
and is more susceptible to changing weather conditions, lead-
ing to inherent fluctuations in network performance. This calls
for network-dynamics-aware designs for 6G-enabled MVA to
deliver consistent quality of experience.

III. SYSTEM DESIGN

In this section, we propose an edge-assisted MVA frame-
work specifically designed for ITLSN, called ITSVA, which
can overcome the unique network challenges of ITLSN and
achieve high overall performance.

A. Framework Overview

In a typical Starlink residential setup, a router connects the
user device to a dish (antenna) that communicates directly with

the LEO satellites. User data are then transmitted to a ground
station that acts as a gateway to the Internet. Fig. 3 presents an
overview of ITSVA, where the mobile device connects to the
Internet via LSN. ITSVA assumes that the analytics server
is placed as close to the edge of the LSN (i.e., the ground
station) as possible to reduce network latency.

Assume that the mobile device’s camera captures frames at
a constant rate of 𝑓 FPS. At the beginning of every second
𝑡, the offloading scheduler of ITSVA makes the offloading
decision for all frames captured between 𝑡 and 𝑡 + 1. To be
specific, if a frame is scheduled to be offloaded, it will be sent
over the network to the remote server for inference. Note that
the frames scheduled for remote inference are offloaded one
by one in order of capture time. Meanwhile, the local tracker
adapts the latest remote inference result, obtained from a local
cache, to each newly captured frame. At the capture time of
each frame 𝐹𝑖+1, the post-processing and rendering module
queries the offloading scheduler for the remote inference result
of the frame 𝐹𝑖 . If the query is successful, the remote inference
result will be used. If the remote inference result is unavailable
due to offloading timeout or not being offloaded, the module
will utilize the tracked result from the local tracker instead.
Once a new remote inference result is returned, the offloading
scheduler immediately updates the local cache with that result.

B. Optical Flow-Based Local Tracker

Our measurement results necessitate selective frame offload-
ing of ITSVA, given the scarce and volatile uplink resources of
the ITLSN. For unoffloaded frames, a straightforward solution
is to reuse the inference result of the latest offloaded frame
since the video content exhibits certain temporal continuity
in successive frames. However, this solution provides high
accuracy only if the video content has insignificant motion be-
tween two consecutive offloadings. In MVA, both the recorded
objects and the camera can move, resulting in highly dynamic
content. As a result, adapting the stale remote inference result
to the newly captured content is necessary to improve the
accuracy of unoffloaded frames. For the object detection task
we focus on in this paper, a recent study [3] has verified that
compared with other sophisticated designs, an on-device object
tracker can dramatically boost the accuracy of unoffloaded
frames at low resource costs. We thus integrate a local tracker
into ITSVA to increase its resilience to varying network
conditions and preserve accuracy.
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Fig. 3: Overview of ITSVA.

Optical flow is widely used to understand and quantify how
objects move in a sequence of video frames, which is well
suited for MVA object tracking. As such, ITSVA leverages
the pyramidal Lucas-Kanade (LK) optical flow algorithm [11]
to track the detected objects, which is able to address both
the image object and camera motion. To achieve lightweight
implementation, we take the bounding box coordinates of the
latest detected objects as the input feature set to obtain the
updated object coordinates in the subsequent frames.

C. DRL-based Offloading Scheduler

To allow fine-grained network adaptation while avoiding
the high overhead caused by frequent decision-making, the
offloading scheduler of ITSVA finds a compromise and makes
offloading decisions once a second. Let F 𝑡 = {𝐹1, 𝐹2, · · · , 𝐹 𝑓 }
denote all frames captured during second 𝑡. The offloading
scheduler then tunes the offloading interval 𝑙𝑡 to maximize the
overall accuracy while minimizing the offloaded data amount
over the network. For instance, if the offloading interval 𝑙𝑡 is
set to 2, frames {𝐹1, 𝐹3, · · · } are scheduled to be offloaded.
𝑙𝑡 = 0 represents a special case where no frames are considered
for offloading.

Determining an appropriate offloading interval presents non-
trivial challenges. A small interval can overload the uplink and
cause increased delays for per-frame offloading. This further
makes the inference result stale, reducing overall accuracy.
Nevertheless, a large interval can also degrade overall accuracy
because the local tacker can only be accurate for a short
time horizon. Moreover, the performance of an interval is also
related to the specific video content. Drastically varying video
content may suggest a small interval to ensure accuracy, while
a large interval may be beneficial if the video content remains
roughly unchanged. In addition, the interval set for the second
𝑡 can have a cascading effect on the performance of subsequent
seconds. The reason is that different settings of 𝑙𝑡 can lead to
different levels of freshness for the locally cached detection
result, thus affecting the subsequent tracking performance.
ITSVA relies on a deep reinforcement learning (DRL) [12]

based offloading scheduler to address the inherent and com-
plicated system dynamics brought by the network conditions,

video content, and previous decisions. The DRL approach
trains an agent through experience and feedback. It then uses
the trained agent for online decision-making. We first describe
the state 𝑠𝑡 , which is the input to the DRL agent at the second
𝑡 and consists of a set of observable variables representing the
situations of the environment.

𝑠𝑡 = ( ®𝑛𝑡 , ®𝑢𝑡 , ®𝑑𝑡−1, ®ℎ𝑡−1, 𝛿𝑡 , ®𝑝𝑡 ) (1)

where ®𝑛𝑡 = {𝑛𝑡−𝑘 , · · · , 𝑛𝑡−1} is the observed upload through-
put for the past 𝑘 seconds. ®𝑢𝑡 = {𝑢𝑡−𝑘 , · · · , 𝑢𝑡−1} is the mean
per-frame offloading delay for the past 𝑘 seconds. Both 𝑛𝑡
and 𝑢𝑡 are indicators of recent network conditions. ®𝑑𝑡−1 is the
offloading decision vector of the last second.2 ®ℎ𝑡−1 represents
the offloading success vector of the last second, which reflects
the quality of the last offloading decision. 𝛿𝑡 is the distance in
frames between the the latest successfully offloaded frame and
the latest captured frame, which indicates the freshness of the
cached detection result. ®𝑝𝑡 = {𝑝1, 𝑝2, · · · , 𝑝 𝑓 } is the optical
flow vector for frames in F 𝑡 . Specifically, 𝑝𝑖 is calculated as:

𝑝𝑖 =
∑︁
𝑗

(
|𝑥′
𝑖, 𝑗

− 𝑥𝑖−1, 𝑗 |
𝑤

+
|𝑦′

𝑖, 𝑗
− 𝑦𝑖−1, 𝑗 |
ℎ

) (2)

where 𝑤 and ℎ are the frame width and height, respectively.
(𝑥𝑖−1, 𝑗 , 𝑦𝑖−1, 𝑗 ) is the coordinate of feature point 𝑗 in frame
𝐹𝑖−1, and (𝑥′

𝑖, 𝑗
, 𝑦′

𝑖, 𝑗
) is the optical-flow tracked coordinate of

the feature point in frame 𝐹𝑖 . 𝑝𝑖 accumulates the normalized
displacements of all tracked features points and quantifies their
motions. Based on this, ®𝑝𝑡 summarizes the most recent video
content dynamics.
Methodology: For each input state 𝑠𝑡 , the DRL agent selects
an action 𝑎𝑡 based on a trained policy 𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 ) → [0, 1],
where 𝜃 is the policy parameter. For our problem, the action 𝑎𝑡
corresponds to the offloading interval 𝑙𝑡 . The policy 𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )
is typically represented by a neural network. In our design, a
1D convolutional neural network layer is applied to extract

2Note that not all frames scheduled for offloading will be successfully
offloaded within a second. To avoid wasting resources in offloading stale
frames, unoffloaded frames of 𝑡−1 will no longer be considered for offloading
during second 𝑡 , and any incomplete offloading of 𝑡 − 1 will also be aborted.
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Fig. 4: Performance comparison of different solutions (statistics of all video-trace pairs in the test set)

features from each vector type input, including ®𝑛𝑡 , ®𝑢𝑡 , ®𝑑𝑡−1,
®ℎ𝑡−1, and ®𝑝𝑡 . Meanwhile, a fully connected layer is used to
process 𝛿𝑡 . All output features are then flattened and combined
into a new layer, which is further fed into another fully
connected layer and a softmax layer to obtain the final action
probability distribution.

Once an action 𝑎𝑡 is taken, the agent receives an immediate
reward 𝑟𝑡 from the environment, which indicates the quality
of the chosen action 𝑎𝑡 in state 𝑠𝑡 . Since the performance goal
of MVA is to maximize accuracy while minimizing offloading
overhead, the reward function is defined as follows:

𝑟𝑡 = 𝛼1𝐴𝑡 − 𝛼2𝑂𝑡 − 𝛼3𝑈𝑡 (3)

where 𝐴𝑡 is the overall analytics accuracy of all frames in F 𝑡 ;
𝑂𝑡 is the actually offloaded data size, indicating the network
traffic consumption for processing the frames in F 𝑡 ; 𝑈𝑡 is the
unoffloaded rate, which is calculated by dividing the number of
frames unoffloaded by the number of frames scheduled to be
offloaded. A high 𝑈𝑡 may suggest an inappropriate offloading
decision that overestimates the actual network conditions. 𝛼1,
𝛼2, and 𝛼3 are positive weighting hyper-parameters that are
used to strike a balance between these three factors.

The agent is then trained to maximize the discounted cumu-
lative rewards

∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 with respect to the policy parameter
𝜃, where 𝛾 is the discounted factor. Particularly, we employ a
popular policy gradient method, proximal policy optimization
(PPO) [13], to train the policy neural network, and distributed
parallel training is also used to accelerate the training process.

IV. EVALUATION

We design and implement a trace-driven simulator to eval-
uate the performance of ITSVA. Real-world collected ITLSN
network traces and pre-recorded videos are employed to drive
the simulation. Video frames are fed into the simulator at their
original capture frame rate, as if they were captured by a real-
world camera.

A. Evaluation Setup

Network traces: We collected a large-scale network dataset
incorporating 1, 200 ITLSN upload traces using a similar real-
world setup as introduced in §II-B. The traces are collected at
different times throughout the day to ensure their representa-
tiveness. Each network trace has a length of 60 seconds with
a granularity of 1 second. The dataset is partitioned, with 80%
reserved for training the DRL agent and the remaining 20%
for testing.

Video dataset and vision task: We use the high-quality videos
with a resolution of 1920 × 1080 and a frame rate of 30
FPS from the MOTS dataset [14] for evaluation. Especially, 4
videos are used for DRL training, and 2 videos are used for
testing. We focus on the object detection vision task, and the
remote inference is executed with a pre-trained YOLOv7-w6
model [5]. The inference delay of the model with an NVIDIA
GeForce RTX 3080 GPU is about 19 ms. We thus regard 19
ms as the server-side inference delay in the simulation.
Baselines: We compare ITSVA with the following baselines.

• Best-effort: This solution offloads frames one by one consec-
utively. It is unaware of the network conditions and simply
offloads the latest captured frame once a remote inference
result is returned. Frames that are not scheduled to offload or
experience offloading timeout will utilize the cached latest
detection result for post-processing and rendering.

• Fixed-policy: This solution offloads frames at a fixed inter-
val, i.e., 𝑙𝑡 is fixed for all seconds. Specifically, the value of
𝑙𝑡 is chosen as the smallest interval that the mean throughput
of all network traces can accommodate. This method can be
considered as a coarse-grained network-adaptive method.

• Rate-adaptive: This solution dynamically adjusts 𝑙𝑡 based on
the most recent network observations. It predicts the upload
throughput as the harmonic mean of the observed throughput
values for the past 5 seconds. It then sets 𝑙𝑡 to the minimum
interval that will not make the offloaded data size exceed
the predicted network capacity. This solution can be seen as
a fine-grained, network-adaptive method that only considers
future network conditions.

Evaluation metrics: The first evaluation metric we are inter-
ested in is accuracy. If all frames can be successfully offloaded
within a frame duration, each frame will use its own remote
inference result for post-processing and rendering, leading
to the highest possible accuracy. Therefore, we consider the
server-side inference result of each frame as its ground truth
and compare the results obtained by different solutions with it
to calculate their accuracy. In particular, we use the F1 score
for the object detection task, and a true positive is accepted if
the predicted and ground-truth bounding boxes have the same
object category and their intersection over union is greater
than 0.5. Another evaluation metric is per-second offloaded
data size. It is calculated by dividing the total offloaded data
size by the total offloading delay. It indicates the consumption
of network resources. For solutions that make decisions every
second, we also consider the mean per-second reward and the
mean per-second unoffloaded rate.
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Action and hyper-parameter settings: As the frame rate of
all videos is 30 FPS, we consider all factors of 30 as the
candidate intervals to ensure the independence of decisions
made for each second, i.e., 𝑙𝑡 = {0, 1, 2, 3, 5, 6, 10, 15, 30}. The
look-back window 𝑘 for network-related inputs is 5. For the
policy network, the number of filters and kernel size for all
1D CNN layers are 128 and 3, respectively; the number of
neurons for each fully connected layer is 128. The learning
rate for the agent training is 1𝑒−4, and the discounted factor
𝛾 is 0.99. The reward weights 𝛼1, 𝛼2, and 𝛼3 are empirically
set to 10, 0.1, and 0.01, respectively.

B. Evaluation Result

Fig. 4 displays the performance of different solutions on
all test video-trace combinations. As can be seen, fixed-policy
and rate-adaptive achieve similar accuracy and mean per-
second reward. The former is unaware of the fine-grained
network and video content dynamics. It cannot fully utilize the
network resources when the bandwidth is abundant or save the
network resources when the video content remains unchanged.
On the other hand, the latter considers the changing network
conditions but achieves only slight improvements. This can be
attributed to the inaccuracy of its throughput prediction and the
lack of knowledge of video content variations. In comparison,
Best-effort achieves higher accuracy than them but offloads
the most data. This solution aggressively offloads frames and
cannot efficiently use network resources for frames that benefit
accuracy the most.

Compared to the baselines, ITSVA attains the highest over-
all accuracy with significantly reduced network data transfer
overhead. With the knowledge extracted from current network
conditions, video content dynamics, and local cache status,
ITSVA is able to make rewarding decisions. Furthermore, one
can also observe that for about 60% video-trace combinations,
ITSVA hits a mean per-second unoffloaded rate of 0. This
confirms that the DRL agent is well-trained to select the most
appropriate offloading interval.

Fig. 5 further shows the performance of the solutions on
each test video. Note that video-1 is captured by a stationary
camera, while video-2 is captured by a moving camera. This
means that video-2 has higher content dynamics than video-1.
As shown, the baselines attain decent accuracy on video-1 at
the cost of high data offloading overheads. Yet, they perform
poorly on video-2 despite the still high network consumption.
By contrast, ITSVA achieves competitive accuracy on video-1
and much higher accuracy on video-2 with drastically reduced

network overheads. This verifies the robustness of ITSVA in
dealing with dynamic video content.

V. CONCLUSION

Edge-assisted MVA, a key technology for bridging the gap
between the physical and virtual worlds, should be specifically
optimized for the ITLSN in 6G to realize its full potential.
Offloading video frames directly from space still faces severe
performance challenges, such as the scarce uplink resources
and the wildly fluctuate network throughput. Motivated by the
insights of in-the-wild measurements, this paper overcomes the
challenges through a carefully designed framework, ITSVA. It
takes the inherent dynamics in the network uplink, video con-
tent, and local cache status into consideration to make robust
offloading decisions. Extensive evaluation results validate the
effectiveness of ITSVA in achieving the goals of high accuracy
and low network overhead.
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