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Abstract—The fifth generation (5G) communication systems
have seen initial success in boosting a broad spectrum of
mobile networked applications. However, emerging applications,
notably immersive eXtended Reality (XR), have already posed
significant new challenges to today’s 5G given their ultra-high
expectations on data rate and latency. They also demand a deep
integration of communication and computation for data analytics.
In particular, by analyzing the vision data captured by mobile
devices, Mobile Vision Analytics (MVA) facilitates understanding
of the ambient environment in XR, a key to truly immersive
and interactive experiences. In this article, we advocate MVA as
a core service of the forthcoming 6G. We closely examine the
potentials and challenges of 6G-enabled MVA and accordingly
present an integrated framework with massively distributed 6G
edge computing nodes to power ubiquitous vision analytics. We
identify the critical design issues towards its implementation and
shed light on a series of advanced enabling technologies.

Index Terms—Mobile vision analytics, eXtended Reality (XR),
6G, Edge computing

I. INTRODUCTION

Cyberspace has long had an ambitious goal — connecting
the world, understanding the world, and interacting with the
world, both physically and virtually, for human beings and
machines, anytime and anywhere. This remained a dream
a decade ago. With the unprecedented development in the
Information and Communication Technology (ICT) sector in
the past decade, however, it is now solid and reachable to a
great extent, if not all.

The main driving forces behind the scene are advanced
communication technologies (from 4G to 5G and beyond)
and intelligent computing technologies, particularly deep neu-
ral networks (DNNs). The former interconnects ubiquitous
devices for physical data acquisition and aggregation, and
the latter offers a deep understanding of the physical world
through large-scale neural networks of cascaded layers. They
together have fostered a number of emerging applications,
notably eXtended Reality (XR), a universal term inclusive
of virtual reality (VR), augmented reality (AR), and mixed
reality (MR). XR shows great application potential in sectors
such as education, healthcare, and entertainment by seamlessly
integrating the physical and digital worlds and allowing users
to immerse themselves and interact with objects in the hybrid
world. Among the many types of data, vision data captured by
cameras of XR devices are undoubtedly the most informative
for sensing and interaction. Vision analytics, which analyzes
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such data with vision DNNs to extract knowledge and insights
for understanding the physical world, therefore, plays a crucial
role in modern XR systems [1].

5G New Radio (NR) began its deployment in 2019, though
its initial design dates back to earlier than 2010.1 The In-
ternational Telecommunication Union Radiocommunication
Sector (ITU-R) has defined three main service types for 5G’s
advanced capabilities: Enhanced Mobile Broadband (eMBB),
Ultra Reliable Low Latency Communications (URLLC), and
Massive Machine Type Communications (mMTC). As a di-
rect extension of 4G’s broadband service, the data rate is
maximized with eMBB, and XR is one of its main targeted
applications. Unfortunately, reliably analyzing camera streams
for latency-critical XR applications is non-trivial, as it requires
running computationally intensive DNNs at high speeds. This
is particularly challenging for Mobile Vision Analytics (MVA)
(Fig. 12 and Fig. 2), where the videos are captured by resource-
constrained mobile and wearable devices that cannot support
high-accuracy in-situ analytics [1], [2]. 5G addresses this issue
by introducing Mobile Edge Computing (MEC), allowing data
to be offloaded to nearby edge servers for analysis.

MEC ignites the integration of communication, storage, and
computation at the network edge. Nevertheless, immersive XR
with MVA can hardly be fulfilled by today’s eMBB, which is
mostly optimized for downlink (DL), not uplink (UL). Even
with MEC servers capable of running state-of-the-art DNNs
in real time, shipping regular videos over ULs can be the
latency bottleneck of the entire analytics pipeline [3], let alone
much larger 360◦ and volumetric videos. URLLC and mMTC
remain unavailable in most 5G deployments, and in fact, they
will not co-exist when serving a user. Lacking of high-quality
ULs, various workarounds have been proposed to reduce the
amount of offloaded data, such as degrading video quality [4]
and recovering with server-side super-resolution (SR) models,
dynamic region of interest (RoI) encoding [5], and DNN model
splitting [6]. Unfortunately, these efforts are often suboptimal
as they need to sacrifice accuracy to achieve the desired la-
tency. Without an offloading service that simultaneously offers
ultra-broad bandwidth and ultra-low latency, particularly for
the ULs, continuous and complete awareness of the physical
world is hard to develop. We expect the forthcoming 6G to
break the current barrier and realize ubiquitous MVA through
its Tbps data rate and sub-millisecond latencies [7], [8].

13GPP Release 15. https://www.3gpp.org/specifications-technologies [Ac-
cessed Mar 12, 2023]

2Cityscapes: https://www.cityscapes-dataset.com/; Microsoft COCO: https:
//cocodataset.org; DIODE: https://diode-dataset.org/ [Accessed Mar 12, 2023]
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(a) Semantic Segmentation (data
source: Cityscapes)

(b) Object detection (data source:
Microsoft COCO)

(c) Human keypoint detection
(data source: Microsoft COCO)

(d) Depth estimation (data source:
DIODE)

Fig. 1: Examples of basic MVA tasks.

We also advocate MVA as a core service in the 6G de-
velopment, given its importance in bridging the virtual and
physical worlds. We believe that ubiquitously deployed Edge
Computing Nodes (ECNs) co-located with 6G base stations
(BSes) will host various vision models to serve heteroge-
neous analytics requests from any mobile devices, regardless
of their computing power (weak or strong), location (urban
or rural), and mobility (static or high-speed). Collaborative
MVA at scale will become true with the closer cooperation
between ECNs. Despite promising, seamless integration with
6G involves a series of issues, including but not limited to
image and video compression optimization, efficient resource
management across ECNs, and user data security and privacy
preservation.

In this article, we first review state-of-the-art works of MVA
and identify its key challenges with today’s communication
and computing infrastructure. We then present an integrated
design for MVA over 6G and discuss its critical components.
We further demonstrate a range of advanced technologies that
will facilitate the design for pervasive XR experiences across
devices and geo-locations.

II. MVA AND 6G: A TALE OF TWO TECHNOLOGIES

Though originated from different technological streams,
immersive XR and mobile broadband have partnered up from
the 3G era, with the former being the driving application
and the latter being the underlying vehicle. Since then, they
have evolved and fostered each other’s growth. Together they
will make profound changes to our lives in the foreseeable
future. For example, conferences can be hosted in a hybrid
physical and virtual world to hurdle the operational barriers
caused by physical distance; engineers can monitor the work
in progress and solve mechanical problems without physically
visiting remote or dangerous sites. These all demand a deep
understanding of the physical environments to reconstruct,
synchronize, and extend real-world experiences in the virtual
world. MVA, which allows machines to understand the phys-
ical world through cameras, serves as one driving force and
fundamental building block for immersive XR. For instance,
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Fig. 2: Two representative advanced MVA pipelines.

depth estimation can help appropriately place virtual objects
in the physical world, and hand tracking enables humans in
the physical world to interact with virtual objects. We now
present a reality check of the context, focusing on MVA for
XR (as summarized in Table I) and the unique challenges of
its implementation over today’s mobile networks.

A. MVA for XR Perception

The resource demand for MVA is enormous (see two
representative MVA pipelines in Fig. 2). For instance, the
latest YOLOv7-E6E3 model needs a powerful GPU, if not the
most advanced (e.g., NVIDIA V100 Tensor Core, 14 FP32
TFLOPS), to achieve near real-time inference (36 FPS). Run-
ning it in real time is clearly beyond the processing capacity of
today’s best smartphone chips (e.g., A16 Bionic at 1.8 FP32
TFLOPS and Snapdragon 8 Gen 2 at 3.7 FP32 TFLOPS),
not to mention other weaker mobile or wearable devices (e.g.,
AR/MR headsets and smart cameras). The power consumption
associated with such models also leads to excessive heat
dissipation for the devices. Model pruning and compression
techniques have been suggested for the subpar devices [4];

3https://github.com/WongKinYiu/yolov7 [Accessed Mar 12, 2023]
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TABLE I: Representative MVA solutions.

Existing work Video type Shipped data Analytics tasks Edge server

DeepDecision [4] normal compressed camera frames object detection single server
Liu et al. [5] normal compressed frame slices object detection, human keypoint detection single server
Meng et al. [9] normal compressed camera frames object detection single server
ANS [6] normal intermediate DNN inference results object detection single server

Elf [2] high-resolution compressed frame partitions
instance segmentation, object classification,
pose estimation

multiple servers

DeepMix [10] 3D videos compressed RGB frames 3D object detection single server

the reduced accuracy, unfortunately, can significantly hurt the
quality of experience (QoE) of XR users.

To overcome the resource constraints, it is necessary to of-
fload certain analytics workloads from weak front-end mobile
or wearable devices to powerful back-end edge/cloud servers.
DeepDecision [4] is an earlier attempt that employs a
measurement-driven mathematical framework to determine an
optimal offloading strategy for AR applications by considering
model accuracy, video quality, battery constraints, and network
conditions. To reduce the network transmission latency in
edge-assisted mobile AR applications, Liu et al. [5] suggest
dynamic RoI encoding to adjust the offloading data rate and
power consumption, which works together with on-device
object tracking to maintain a high detection accuracy. Meng
et al. [9] revisit the canonical design of edge-assisted AR and
find that video compression plus on-device object tracking
show satisfactory effectiveness in edge-assisted object detec-
tion. Another line of research considers DNN model splitting
instead of using standalone models on mobile devices or edge
servers for inference. For example, with the observation that
the intermediate data size of DNN is much smaller than the
original input data, ANS [6] automatically partitions a DNN
into two parts, with the front-end part running on the mobile
device and the back-end part running on the edge server.

As camera technology evolves and hardware costs continue
to decrease, ultra high definition (UHD, e.g., 4K and 8K)
videos at high frame rates (100+ FPS) will be readily captured
by the latest mobile devices. This paves the way to realistic
scene reconstruction and fine-grained object identification in
XR, which ideally expects a 32K+ resolution.4 360◦ videos
further cover an omnidirectional field of view (FoV) beyond
the limited FoV of traditional videos. Analyzing such videos
can provide users with full situational awareness without blind
spots. Nevertheless, under the same perceived quality, 360◦
videos can be 4× to 6× larger than regular videos, making
MVA increasingly data-intensive and resource-intensive. Its
unique spherical geometry also challenges vision models ini-
tially designed for and trained on flat images [11].

Newer data capture devices, such as Light Detection and
Ranging (LiDAR) and hyperspectral cameras, have further
enhanced our perception of the environment with rich depth or
spectral information, laying the foundation for truly immersive
experiences and interactions [10]. For instance, 3D mobile
vision can offer higher accuracy than its 2D counterpart by
detecting distant small objects and mitigating the occlusion

4http://www.clarkvision.com/articles/human-eye/ [Accessed Mar 12, 2023]

issues [1]. However, today’s communication and computing
infrastructures are not ready for real-time 3D or hyperspectral
vision analytics due to the dramatically increased resource
demands for processing additional depth or spectral data.

There have been initial attempts toward MVA with these
new-generation visual data that contain much richer informa-
tion. To accommodate the huge data volume of UHD, Elf
[2] leverages multiple edge servers with data-parallel content-
aware frame partitioning for offloading acceleration. For 3D
MVA, DeepMix [10] presents a workaround that offloads only
RGB images to the edge for 2D object detection and then fine-
tunes the results on the mobile device with depth information
to boost accuracy.

B. MVA over 5G: Reality Check

MEC is regarded as a key technology and architectural con-
cept to enable the evolution to 5G [12]. Together with network
slicing, it is expected to accommodate a wide spectrum of
computation-intensive applications that could not be executed
on mobile devices, including MVA. Assuming the refresh rate
of a camera is 60 Hz, the underlying vision analytics should
be completed within 16.7 ms to enable real-time interaction.
Fig. 3 shows a canonical MEC-based MVA implementation
where the mobile device sends video frames to the edge server
for vision analysis. The end-to-end (E2E) latency for analyzing
a frame consists of four parts, the upload time (UT) of sending
the frame to the edge server, the server-side inference time
(IT), the analysis results download time (DT), and the post-
processing and rendering time (PRT) on the mobile device. For
most MVA tasks (e.g., object detection and hand tracking), DT
can be neglected because the analysis results are only several
bytes [12] while the DL bandwidth is relatively ample. IT
and PRT are highly hardware-dependent and determined by
the computing power of edge servers and mobile devices,
respectively. Therefore, network-related latency optimization
for MVA should focus on UT.

Unfortunately, the user-perceived UL speed of 5G is unsat-
isfactory. According to a recent report,5 although the average
5G DL speed of T-Mobile, a major US operator, achieves 171
Mbps, the average 5G upload speed only reaches 17.8 Mbps.
At this speed, it would take several seconds to upload even
a highly-compressed 4K frame, which is significantly longer
than the tolerant latency of MVA (e.g., 16.7 ms). Furthermore,

5https://www.opensignal.com/reports/2022/07/usa/mobile-network-
experience-5g [Accessed Mar 12, 2023]
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Fig. 3: The offloading latency breakdown for a canonical edge-
assisted MVA architecture.

as XR becomes pervasive, we have to simultaneously track
numerous objects from massive mobile devices, together with
many other tasks in XR scene construction, integration, and
interactions. MVA at scale indeed demands eMBB, URLLC,
and even mMTC, which are not simultaneously supported by
5G. To deliver on the long-held immersive and interactive
promise, new-generation mobile broadband beyond 5G should
be put forward on the agenda.

C. MVA as a 6G Core Service: Design Space

As of now, there is no universally-accepted standard for
6G from the government or industry. Nonetheless, without a
doubt, 6G will be application-driven and human-centric, sup-
porting applications beyond current mobile use cases [8], [13].
Advanced VR and AR, pervasive intelligence, and Internet of
everything (IoE) have been frequently cited as 6G’s targets,
all of which are essential components in immersive XR. With
Terahertz and millimeter wave (mmWave) communications,
6G is anticipated to provide Tbps data rate, sub-millisecond
latency, and ubiquitous connections with high efficiency [7],
[8], [13]. Beyond these exciting measures from the communi-
cation perspective, we envision the following functions of 6G
for intelligent and interactive applications, in particular, MVA
as a key enabler towards immersive XR:

Inference task offloading as a network primitive: Mobile
network operators (MNOs) are anticipated to adopt flexible,
decentralized business models for 6G with spectrum sharing,
infrastructure sharing, and intelligent automated management.
In this context, we advocate inference task offloading as a
network primitive in 6G.

Unlike previous generations of mobile networks that largely
focus on optimizing the DL-centric QoE, 6G is expected
to provide high-throughput (Tbps) and low-latency (0.1 ms)
wireless UL as well. As such, in 6G, heavy, bursty video
data from multitudinous mobile devices can be uploaded to
the densely deployed high-performance edge servers through
high-speed ULs and analyzed by application-customized and
high-accuracy vision models in milliseconds or below. Also,
note that 5G MEC does not differentiate inference tasks
from other data traffic nor consider the pipelined operation
of inference tasks. Since 6G will be application-driven and
empower massively distributed intelligence, these should be
factored into the 6G MEC design. The design should also be

open enough to seamlessly accommodate the latest analytics
tools and edge computing platforms, e.g., EdgeX Foundry6.

Mobility-aware and mobility-oblivious computing: Re-
cent measurement results of 5G have revealed that the network
throughput exhibits substantial variations while walking or
driving [3], [14]. The UL throughput can often drop to < 10
Mbps while driving [3], and the prolonged E2E latency in
MVA can severely degrade the XR QoE. In the indoor envi-
ronment, 5G mmWave may incur high path loss, as obstacles
like walls easily block high-frequency signals.

6G-enabled MVA should be mobility-aware in network-
wide resource management and cooperation, providing stable
and satisfactory analytics service for indoor and outdoor users.
Additionally, 6G is expected to encompass various mobile
access technologies, possibly including the global-range low
Earth orbit (LEO) satellites and the short-range backscatter.
Its cell coverage will also be more versatile, including densely
deployed tiny cells (covering tens of meters [13]). Apparently,
handoff across cells and communication technologies will be
more frequent. Thus, it is necessary to mask the underlying
network heterogeneity and dynamics so that users in the same
virtual world but with diverse network access conditions can
have a uniform experience. Note that the movement in the
physical world may be inconsistent with that in the virtual
world, e.g., a presenter in a virtual conference room may be
physically on a high-speed train.

Pervasive collaboration and integration: 5G-empowered
MVA has primarily focused on optimizing QoE for a single
camera stream. They tend to understand and track sporadic
real-world objects appearing in a limited FoV for a short time.
With the recent advances in video capture and analytics, the
next wave of XR will embrace large-scale collaborative ana-
lytics of multiple camera streams or even mass camera arrays.
Multitudinous objects or things of the physical world will
be continually identified and tracked over extensive temporal
and spatial ranges. The outcomes can then be integrated to
reconstruct a holistic digital world, closing the gap between
the physical and virtual worlds for truly immersive XR.
This paradigm shift calls for tight collaborations across geo-
distributed edge nodes, as each node may only be able to
track an object within a certain space-time window. In other
words, together with the network primitive for offloading and
mobility awareness, 6G MEC should offer aggregated and
transparent resources across its edges to satisfy the mobile
users’ continuing MVA requests.

III. 6G-ENABLED MVA: AN INTEGRATED FRAMEWORK

Given our ultimate goal of understanding and intellectual-
izing the physical world and further bridging the gap between
the physical and virtual worlds, forward-thinking to 6G and
its driving applications is necessary from now on. We believe
that MVA will be the key to realizing our expectations of XR
and envision a 6G-enabled “MVA as a service” framework, as
demonstrated in Fig. 4. This framework allows users to enjoy
seamless MVA service from an integrated terrestrial, airborne,
and satellite access network.

6https://www.edgexfoundry.org/ [Accessed Mar 12, 2023]
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Fig. 4: A framework of 6G-enabled MVA for immersive XR.

The framework is divided into three layers: perception,
network, and computation. The perception layer is composed
of ubiquitous mobile devices with cameras, which continually
capture videos from the physical world. The network layer
comprises densely deployed terrestrial BSes, airborne BSes
carried by flying vehicles (e.g., drones and airplanes), and
satellite ground stations (GSes), which collectively provide
seamless and high-quality network access for mobile devices
worldwide. ECNs co-located with BSes constitute the compu-
tation layer to provide various MVA services.

A. Network- and Analytics-aware Compression

Image and video compression is necessary for MVA since
uncompressed video frames are known to be very large and
unsuitable for direct offloading. For example, an uncompressed
YUV420 1080p frame has a size of 2.97 MB, let alone
high-resolution 360◦ frames or volumetric frames including
additional depth or point cloud information.

Traditional image and video compression algorithms devel-
oped for human visual systems, such as JPEG and H.264, are
also popular in vision analytics systems. By controlling the
compression parameters, one can trade off inference accuracy
against offloaded data size (thus, the network traffic). For
instance, Fig. 5 demonstrates how the image size and object
detection accuracy vary with the JPEG image quality. As
shown, with the image quality decreasing from 96 to 90,
the data size reduces by 52.91% while the accuracy only
drops by 1.17%. This suggests that 6G-enabled MVA should
integrate compression parameters as configuration knobs to

handle the unavoidable network dynamics and achieve the joint
optimization of communication and computing.

Machine-centric image or video compression algorithms
customized for specific vision tasks have recently gained
increasing popularity, which typically achieve higher accu-
racy than the task-agnostic traditional compression algorithms
[15]. They, however, usually end up with a prolonged E2E
latency due to running DNNs for compression/decompression
and poor generalizations for new tasks. Consequently, further
efforts are needed to design novel, lightweight, and univer-
sal machine-centric image and video compression algorithms
with minimum resource consumption. Additionally, the videos
captured by a camera array, such as 360◦ and volumetric
videos, are becoming popular due to their immersive nature.
Yet, considering the particular geometry and the huge data
volume, efficiently compressing them for MVA remains an
open problem.

B. Dynamic Task Routing

We have seen the rapid deployment of 5G BSes recently.
Till late 2022, China alone has deployed nearly 2.3 million
BSes.7 Since 6G would introduce tiny cells, the number
would be even higher, providing better opportunities for ECN
deployment. We expect 6G ECNs to handle various vision
tasks and have mechanisms to select the most suitable model
(e.g., YOLOv7 and EfficientDet8) for each task under certain

7https://www.rcrwireless.com/20230103/5g/chinese-telcos-deploy-2-
million-5g-base-stations-nationwide [Accessed Mar 12, 2023]

8https://github.com/google/automl/tree/master/efficientdet [Accessed Mar
12, 2023]
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Fig. 5: The influences of image quality on image size and
object detection accuracy. Results are normalized by that of
the highest image quality. (model: YOLOv7; accuracy metric:
mAP; image source: COCO’s validation dataset).

resource constraints and performance requirements. However,
the limited capacity of hardware resources (e.g., GPU mem-
ory) prevents ECNs from pre-loading a large pool of vision
models simultaneously, while loading models on demand will
introduce significant delays (up to tens of seconds).

With the dense deployment of 6G tiny cells, one mobile user
may have multiple ECNs nearby. We thus suggest aggregating
the computing resources of geographically proximate ECNs to
improve the overall performance. A centralized controller can
be deployed for distributed ECNs to guide the dynamic model
loading/unloading on each ECN and route a user request to an
appropriate ECN with a suitable model already being loaded.
Each ECN can also exchange information with neighbor ECNs
and make its model loading and task routing decisions if the
centralized controller is unavailable.

The task routing among 6G ECNs also relies on accurate
analytics workload prediction that accommodates the mobility
of both users and ECNs. Resource management and scheduling
techniques based on traditional workload predictions may
no longer work. The trajectories of users and ECNs, the
arrival patterns and performance goals of requests, the resource
demands of vision models, and resource availability will be
jointly considered to make task routing decisions.

C. Large-scale XR through Massive Collaborations

Current MVA tends to analyze video data from individual
users isolatedly. The knowledge and insights gained are not
shared between users, dramatically limiting one’s perception of
the physical world. In contrast, 6G-enabled MVA will develop
the crowdsourcing intelligence to immerse everyone into a
hybrid physical and virtual world. For instance, by jointly
analyzing the massive video streams captured from different
angles by audiences at a concert, complete awareness of the
scene can be built in real time, allowing remote participants to
interact with the scene from the comfort of their homes. Per-
vasive human-human and human-object interactions present
another significant challenge in such a hybrid world. Multiple
MVA tasks need to be executed simultaneously under the hood
to deliver responsive and smooth interaction experiences. For
instance, even simple interactions between an XR user and a
virtual object require running object detection, hand tracking,
and semantic segmentation in the background [12]. Therefore,

resource-efficient multi-task MVA optimization is necessary.
As users can also interact with objects in other ways, such as
using voice or text prompts, combining MVA with analysis of
other data modalities (e.g., audio and text) may enable more
natural interaction.

The underlying MVA pipeline for large-scale collaborations
may involve several stages, from denoising and synchronizing
video data of massive cameras, analyzing them on distributed
ECNs, to integrating distributed processing results for further
analysis in cloud data centers. Ensuring a low E2E latency
for real-time interaction is thus challenging. Fortunately, the
accelerating vertical integration between MNOs and cloud
providers (CPs) and horizontal integration between different
MNOs or CPs have created new possibilities. For example,
MNOs (e.g., Bell and Verizon) and CPs (e.g., AWS) have part-
nered to build 5G MEC with AWS Wavelength9. Additionally,
sky computing10 has emerged to accelerate the integration and
simplify the use of multi-cloud resources. These techniques
should undoubtedly be integrated with 6G-enabled MVA to
realize immersive XR at scale.

Videos are privacy-sensitive data that may expose one’s
real-time locations, appearance, and property. Since shipping
video data to ECNs is a network primitive in our framework,
developing effective technologies to secure the offloaded data
in transmission and computing is critical in 6G-enabled MVA.
Advanced analytics tasks may also require federated analytics,
where distributed ECNs collaboratively complete the analytics
task without exchanging local data.

IV. FURTHER DISCUSSIONS

A. Integrating Terrestrial and Satellite Access Networks

To achieve a seamless global coverage, 6G is expected to
integrate terrestrial and satellite access networks [8], offering
services to remote and rural areas and bridging the digital
divide. Worldwide XR services can then be realized, such as
global conferencing, telemedicine and surgery, and wildlife
surveillance. Although satellite access is already available in
the latest smartphones, they generally use geosynchronous
Earth orbit (GEO) or medium Earth orbit (MEO) satellites.
Given the high orbits (35, 786 km for GEO), these satellites
have a wide coverage but suffer from long latency and
narrow bandwidth. The services to mobile devices have then
been largely confined to short messages for emergency use.
For broadband and low latency access, 6G would eventually
incorporate LEO (around 550 km) satellite communications to
support real-time applications, such as XR.

Despite promising, LEO-supported MVA faces substantial
challenges. For instance, each individual LEO satellite has
a relatively limited coverage area. The serving LEO satellite
for a mobile device can change in orders of minutes or even
seconds. This requires efficient handover management, device-
satellite relative movement predictions, and inter-satellite links
to ensure service continuity. Current LEO constellations, such
as Starlink, still rely on a bent-pipe, i.e., a satellite-to-GSes
link to connect to the rest of the global Internet, which does not

9https://aws.amazon.com/wavelength/ [Accessed Mar 12, 2023]
10https://sky.cs.berkeley.edu/ [Accessed Mar 12, 2023]
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fully unleash the potential of space communications. Cross-
ocean inter-satellite links using laser remain in the experi-
mental stage. Even if they are available, the round-trip latency
will be no less than 60 ms across the Pacific Ocean, which is
considerably lower than that of GEO satellite links (> 250 ms)
or today’s submarine fiber links (around 100 ms) but by no
means comparable to accessing nearby BSes. As such, for a
virtual scene constructed with worldwide distributed physical
objects, smart synchronization is a mandate.

B. Energy-efficient and Energy-sustainable Analytics

DNN model inference can consume a significant portion
of energy.11 Therefore, energy-efficient vision models should
be developed to avoid excessive energy consumption. The
model inference is primarily executed in 6G ECNs, which can
experience dramatic workload variations due to users’ daily
activities. Jointly coordinating distributed ECNs and designing
workload-driven energy supply strategies will be essential to
optimize network-wide energy efficiency. Moreover, mobile
devices are prone to drain the embedded batteries, which
can cause service interruptions. Designing an energy-efficient
offloading strategy may mitigate this issue. Additionally, the
energy transfer and harvesting components of 6G are hopeful
of extending the battery life cycles. Mobile devices can even
be made batteryless through backscatter communications.

MVA can produce large, bursty upload traffic, and trans-
mitting the traffic to satellites may only work with high-end
mobile devices with a robust energy supply. Our measurement
shows that a current Starlink dish consumes over 60 W power
for broadband communications at a speed of around 150 Mbps
(DL) and 10 Mbps (UL). Relaying the traffic via airborne
access networks established by drones or balloons could be
promising and deserve further exploration.

C. Advanced Learning and Multimodal Analytics

We expect that federated learning will be a key to aggre-
gating heterogeneous local data and resources of distributed
ECNs for large model training. Meanwhile, transfer learning
and meta-learning will be essential in reducing training costs
and improving model adaptability. Beyond images captured
from the physical world, vision models may be used to
analyze artificial intelligence-generated content (AIGC) as it
becomes pervasive and realistic. Adapting vision models for
such content can be an interesting future direction. With
multimodal data acquisition becoming affordable and reliable,
multimodal analytics, which extends MVA from visual data
to multimodal data sources (e.g., auditory and kinesthetic),
deserves further exploration for better immersive experiences.

V. CONCLUSIONS

The full implementation of immersive XR relies on multiple
technical enablers, such as intuitive human-machine interfaces.
This article explores the communication and computing design
optimization for MVA, a key enabling technology for XR. We

11https://research.samsung.com/blog/Smart_at_what-cost_Characterising_
Mobile_DNNs_in_the_wild [Accessed Mar 12, 2023]

started with a state-of-the-art review of MVA. We stressed
that today’s 5G design is not ready for massively distributed
MVA, which struggles to balance latency and accuracy with
constrained resources and fragmented operations. 6G would
be a game changer; yet there are critical challenges ranging
from ultra-fast network connections, ubiquitous access, to the
seamless integration of computing and communication with
smart task offloading. Our concrete vision of 6G-enabled MVA
was described by an integrated framework empowered with
edge intelligence. We also identified the critical issues towards
its implementation and emerging enabling technologies.
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