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CASVA: Configuration-Adaptive Streaming for
Live Video Analytics

Miao Zhang, Fangxin Wang, Jiangchuan Liu




BCKGROUND

Traditional video streaming
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Live video analytics

Pervasive camera deployment = Live Video Analytics
} (automated analysis for real-time actionable
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High-accuracy deep neural networks (DNNs) insights)

Human beings are no longer the only consumers of videos!



BCKGROUND

Video analytics streaming
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Cameras typically do not have sufficient
resources for in-situ analytics.

Resource-rich backend server

Goals: Optimizing algorithm-perceived (DNN-perceived) QoE instead of human-perceived QoE.

How to adaptively and efficiently stream videos over the network

for live video analytics?



MOTIVATION

[0 Measurement Setup

Configuration knobs: Frame Rate (FR), Frame Resolution (RS), Quantization Parameter (QP)

Vision Tasks:

Object Detection (OD) Semantic Segmentation (SS)
Bounding-box-based task Pixel-based task



MOTIVATION

[0 Measurement Setup

Video dataset:

| VideoName | Source | Type | Descripton

STA1 YouTube Live stationary traffic camera
STA2 YouTube Live stationary traffic camera
STA3 YouTube Live stationary traffic camera
DASH1 YouTube Dashcam
DASH?2 YouTube Dashcam

Metrics of Interest:

Bitrate: indicate the network resource requirement.

Accuracy: F1 for OD and mloU for SS.

A video clip collected on a sunny day
A video clip collected on a rainy morning
A video clip collected on a sunny morning
Daytime drive in Chicago downtown

Night drive around London downtown



MOTIVATION

[0 Measurement Insights
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(a) Tune FR (RS: 1080p, QP: 23).
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Quantization Parameter

(b) Tune QP (RS: 1080p, FR: 30).
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(¢) Tune RS (FR: 30, QP: 23).

Different configuration knobs have different impacts on bitrate and accuracy,

and such impacts are video-specific and task-specific.



MOTIVATION

[0 Measurement Insights
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Mean bitrate and accuracy distribution of all
configurations (Task: SS, video: STA1).

A higher bitrate does not necessarily lead to a
higher accuracy, and configurations with similar

bitrates can have very different accuracies.

U

Configuration tuning is necessary for

bandwidth-efficient video analytics.



MOTIVATION

[0 Measurement Insights
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Segment Index
Segment bitrate and accuracy variations under a

specific configuration (FR:10, QP: 28, RS: 720p; Task:
OD, video: DASH1).

Accuracy

The relationship between configuration and
bitrate (accuracy) is video content-dependent

and highly variable.

U

Configuration-based streaming needs to

be content-adaptive.



MOTIVATION

[0 Measurement Insights
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Segment Index Continually fine-grained configuration
Segment accuracy comparison of the profiled and adaptation is necessary.
optimal configuration (Task: OD, video: STA2, available
bandwidth: 1.5 Mbps).



CASVA

[0 Configuration-Adaptive Streaming: Framework

Frames are encoded and delivered in segments.
The upload lag of a segment is the time difference
between its actual and expected upload time.

Frames captured by the @(] Camera Client

camera are cached in a
buffer raw frames Edge / Cloud Server

camera buffer 1
video codec ;D; —> @@OO}) —> U“ :% §o~
configuration _ j DNN inference [—— O
controller configuration = T
O

Choosing the configuration for each segment to
minimize upload lags while maximizing the server-
side inference accuracy.



CASVA

[0 Configuration-Adaptive Streaming: Challenges

» High accuracy and low latency are inherently conflicting goals.
» The server-side inference accuracy is affected by video content dynamics.
» The upload delays are influenced by dynamic segment bitrate and network conditions.

» In continuous live streaming scenarios, the upload lags can be accumulated.
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CASVA

[0 Deep Reinforcement Learning Based Solution

State: past network conditions, buffer
status, past configuration choices and
video content characteristics.

Optimization goal: maximizing the
long-term cumulative DNN-perceived
QoE.

Policy gradient training: a dual-
clipped Proximal Policy Optimization
(PPO) method.
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EVALUATION Experimental Setup

[0 Two streaming modes
Latency-first: 1= a,Q; — a, max(us —[,0) /| — azM;

delivery-first: 1. = a1Q; — ay,max(u; —1,0)/ 1 + azl(bsyq < be)(bey1 — be) /1

[d Network traces

An FCC fixed broadband dataset, a 4G/LTE bandwidth dataset

1 Evaluation metrics

Mean accuracy, mean lag, segment loss rate (latency-first mode only).

1 Baselines

ABR-U: a DRL-based ABR solution

Offline: a profiling-based solution -



EVALUATION

1 Evaluation Results
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Performance of different methods in the latency-first mode (network traces: 4G/LTE) =



EVALUATION

1 Evaluation Results

9t ABR-U Offline CASVA

10 | | | ABR-U Offline 'E:] CASVPL s I - 45 | ' | ABR-U ' Offline ED CASVA' = | @
%) - 77— - VT 2 Z g
o _ O S\ 8 7 26l
3 08| N § g 30| N 86
VS NN \ R \ g
é 0.6-§ § § § g 15 | § § § gs- .
§ \ \ \ 2 \‘}——‘ \ \ >4 i‘\\
DASH1 DASH2 STA1 STA2 STA3 . DASH1 DASH2 STA1 STA2 STA3 1 15 30 45 60
Videos Videos Segment Index
(a) Mean accuracy comparison (b) Mean lag comparison (c) Lag variations over time

Performance of different methods in the delivery-first mode (Task: OD; network traces: 4G/LTE)
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SUMMARY

» Live video analytics creates new opportunities for video streaming, and it
requires new designs of the streaming frameworks.

» Tuning video encoding configurations allows fine-grained adaptation to
dynamic video content and network conditions.

» Deep reinforcement learning is well suited for addressing the challenges

in configuration-adaptive streaming.
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