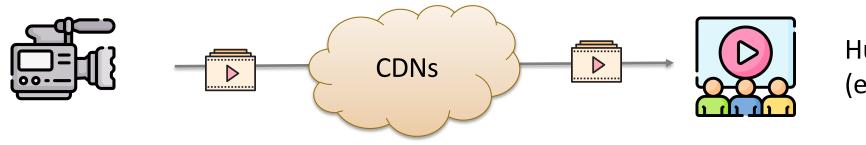
UNIVERSITY SFL SIMON FRASER ENGAGING THE WORLD

CASVA: Configuration-Adaptive Streaming for Live Video Analytics

Miao Zhang, Fangxin Wang, Jiangchuan Liu

BCKGROUND

Traditional video streaming



Live video analytics

Live Video Analytics (automated analysis for real-time actionable insights)

Pervasive camera deployment

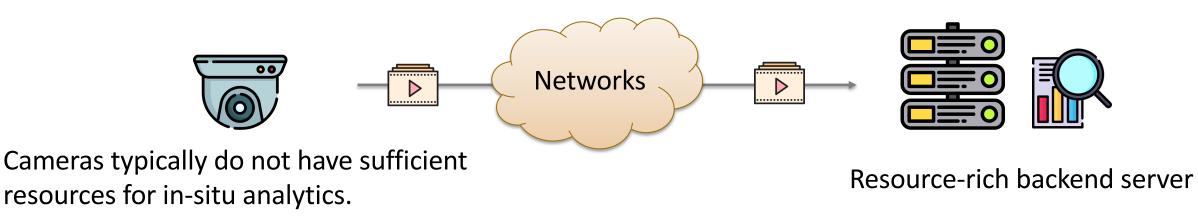
High-accuracy deep neural networks (DNNs)

Human beings are no longer the only consumers of videos!

Human viewers (entertainment)

BCKGROUND

Video analytics streaming



Goals: Optimizing algorithm-perceived (DNN-perceived) QoE instead of human-perceived QoE.

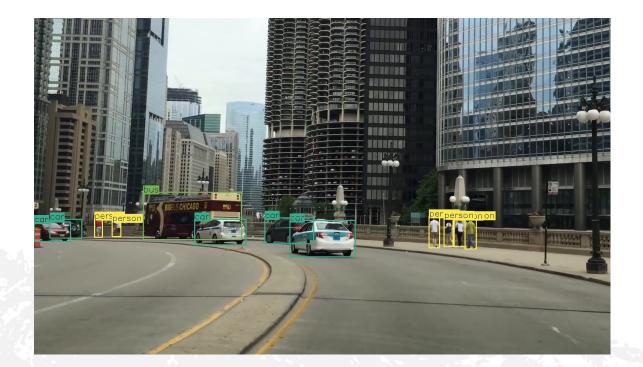
How to adaptively and efficiently stream videos over the network

for live video analytics?

Measurement Setup

Configuration knobs: Frame Rate (FR), Frame Resolution (RS), Quantization Parameter (QP)

Vision Tasks:



Object Detection (OD) Bounding-box-based task

Measurement Setup

Video dataset:

	Video Name	Source	Туре	Descr
	STA1	YouTube Live	stationary traffic camera	A video clip collec
	STA2	YouTube Live	stationary traffic camera	A video clip collecte
	STA3	YouTube Live	stationary traffic camera	A video clip collected
	DASH1	YouTube	Dashcam	Daytime drive in (
	DASH2	YouTube	Dashcam	Night drive around

Metrics of Interest:

Bitrate: indicate the network resource requirement.

Accuracy: F1 for OD and mIoU for SS.

cription

cted on a sunny day

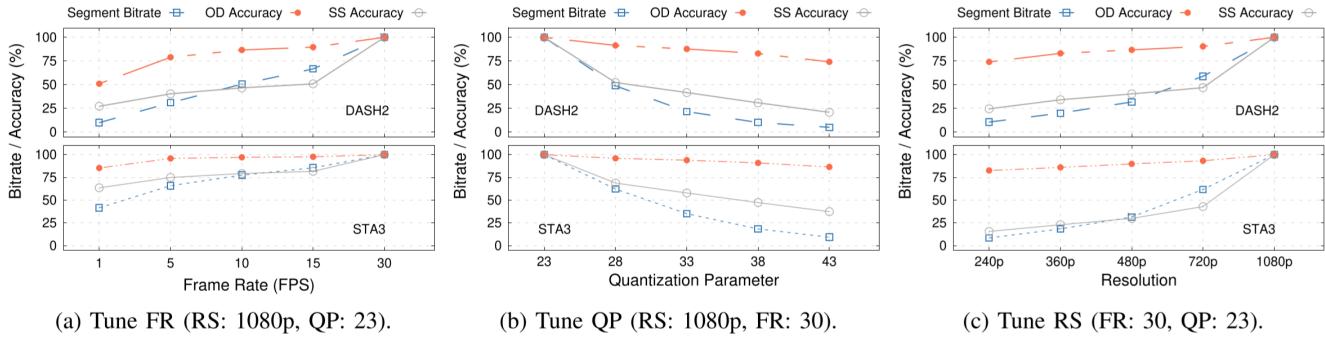
ed on a rainy morning

ed on a sunny morning

Chicago downtown

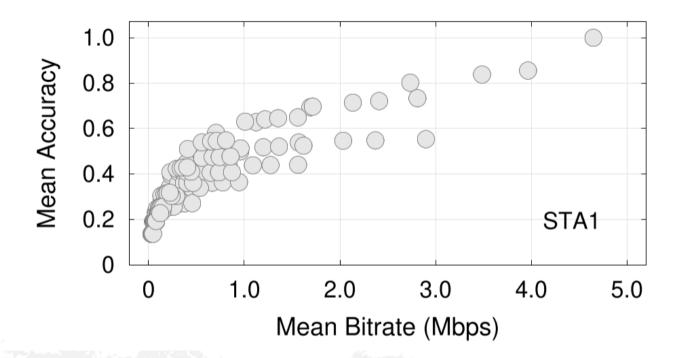
d London downtown

Measurement Insights



Different configuration knobs have different impacts on bitrate and accuracy, and such impacts are video-specific and task-specific.

Measurement Insights



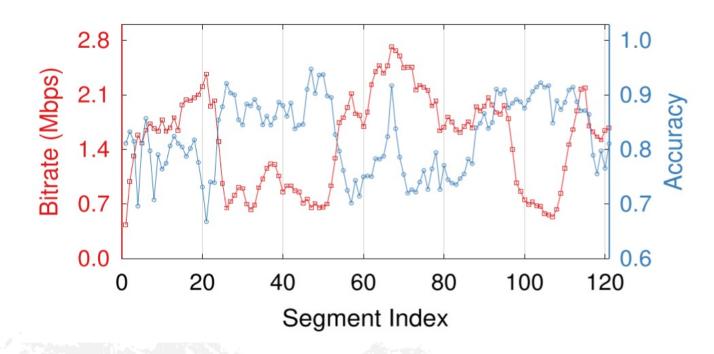
Mean bitrate and accuracy distribution of all configurations (Task: SS, video: STA1).

A higher bitrate does not necessarily lead to a higher accuracy, and configurations with similar bitrates can have very different accuracies.

Configuration tuning is necessary for

bandwidth-efficient video analytics.

Measurement Insights



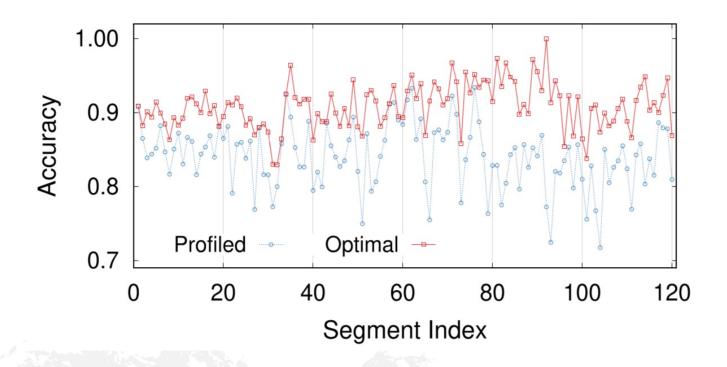
Segment bitrate and accuracy variations under a specific configuration (FR:10, QP: 28, RS: 720p; Task: OD, video: DASH1).

The relationship between configuration and bitrate (accuracy) is video content-dependent and highly variable.

Configuration-based streaming needs to

be content-adaptive.

Measurement Insights



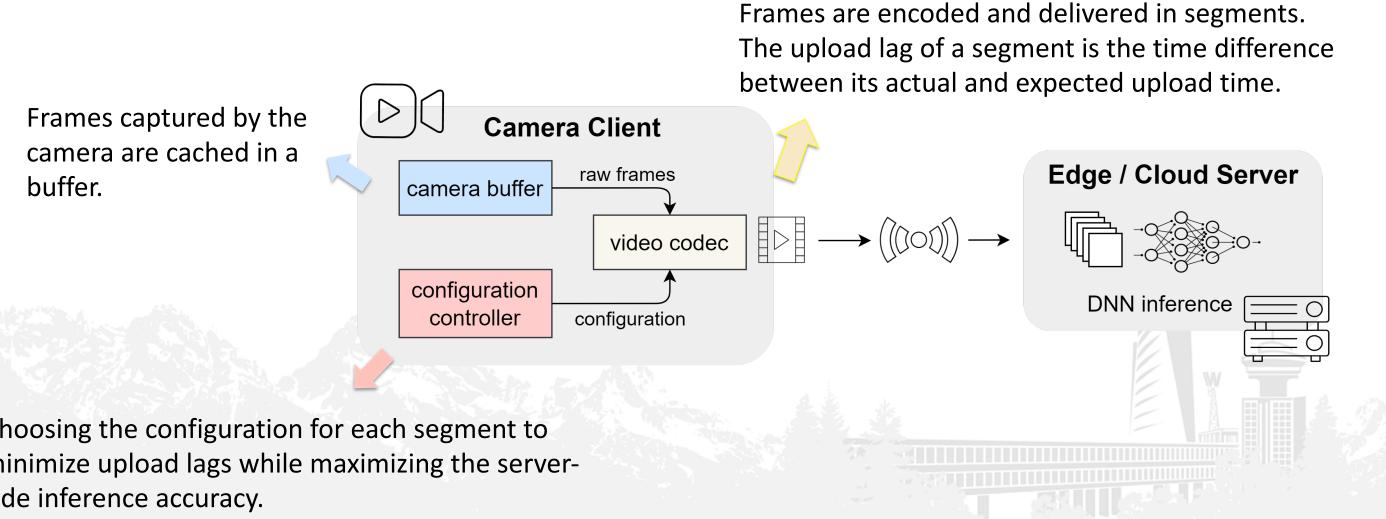
Segment accuracy comparison of the profiled and optimal configuration (Task: OD, video: STA2, available bandwidth: 1.5 Mbps).

Profiling-based solutions fail to keep up with the intrinsic dynamics of bandwidth-accuracy trade-off.

Continually fine-grained configuration

adaptation is necessary.

Configuration-Adaptive Streaming: Framework



Choosing the configuration for each segment to minimize upload lags while maximizing the serverside inference accuracy.

Configuration-Adaptive Streaming: Challenges

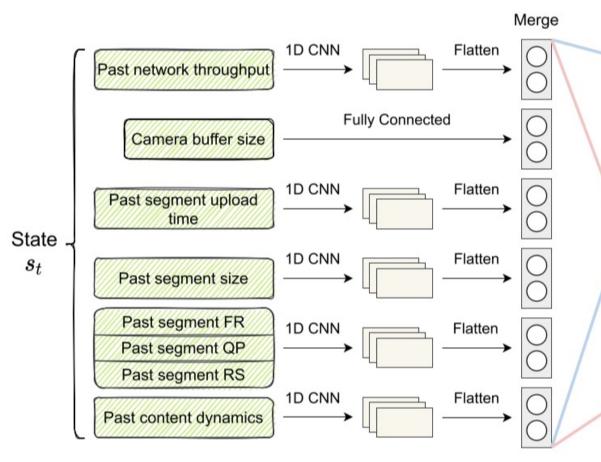
- High accuracy and low latency are inherently conflicting goals.
- The server-side inference accuracy is affected by video content dynamics.
- > The upload delays are influenced by dynamic segment bitrate and network conditions.
- > In continuous live streaming scenarios, the upload lags can be accumulated.

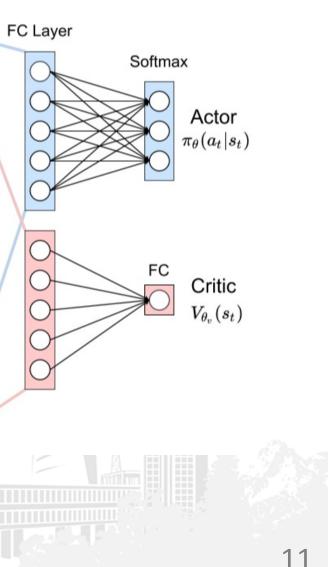
Deep Reinforcement Learning Based Solution

State: past network conditions, buffer status, past configuration choices and video content characteristics.

Optimization goal: maximizing the long-term cumulative DNN-perceived QoE.

Policy gradient training: a dualclipped Proximal Policy Optimization (PPO) method.





Two streaming modes

Latency-first: $r_t = \alpha_1 Q_t - \alpha_2 \max(u_t - l, 0) / l - \alpha_3 M_t$

delivery-first: $r_t = \alpha_1 Q_t - \alpha_2 \max(u_t - l, 0) / l + \alpha_3 \mathbb{I}(b_{t+1} < b_t) (b_{t+1} - b_t) / l$

Network traces

An FCC fixed broadband dataset, a 4G/LTE bandwidth dataset

D Evaluation metrics

Mean accuracy, mean lag, segment loss rate (latency-first mode only).

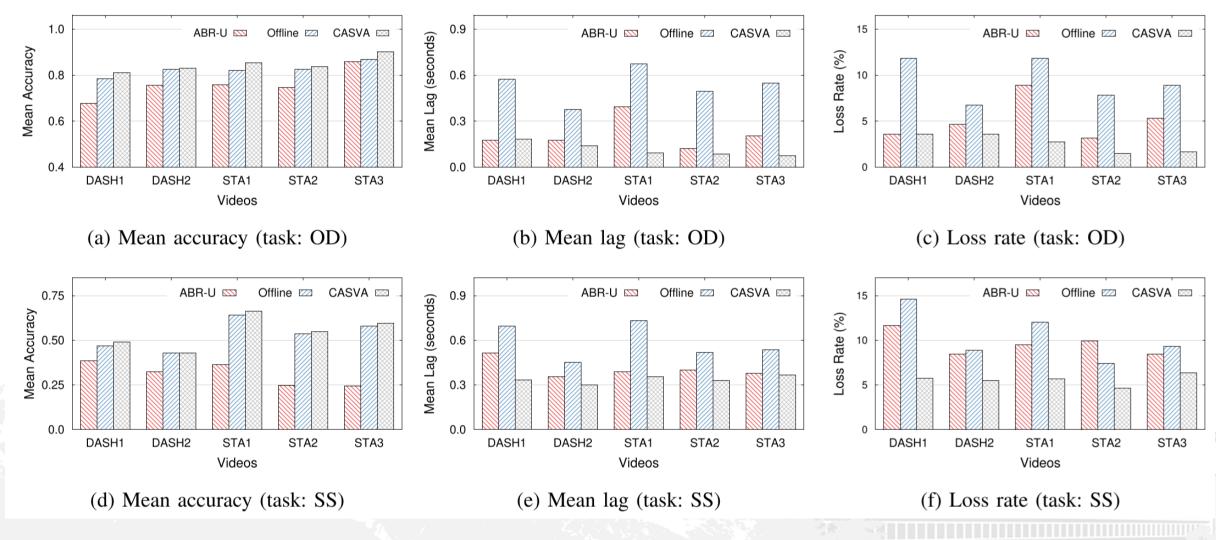
Baselines

> ABR-U: a DRL-based ABR solution Offline: a profiling-based solution

Experimental Setup

EVALUATION

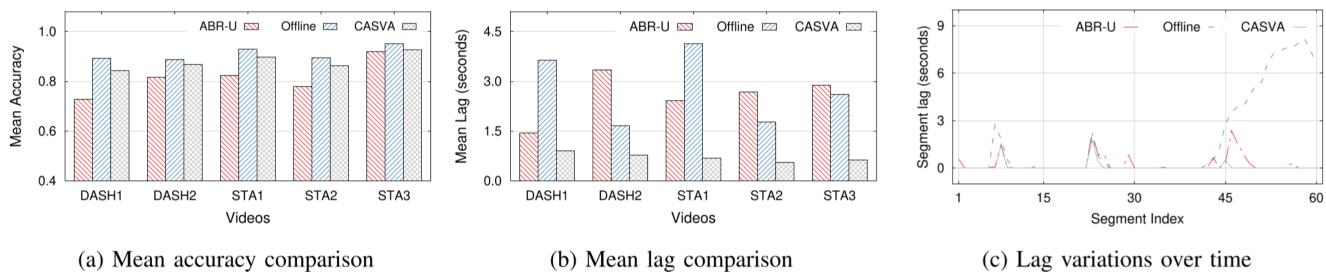
Evaluation Results



Performance of different methods in the latency-first mode (network traces: 4G/LTE)

EVALUATION

Evaluation Results



Performance of different methods in the delivery-first mode (Task: OD; network traces: 4G/LTE)

SUMMARY

- Live video analytics creates new opportunities for video streaming, and it \succ requires new designs of the streaming frameworks.
- Tuning video encoding configurations allows fine-grained adaptation to dynamic video content and network conditions.
- **Deep reinforcement learning** is well suited for addressing the challenges
 - in configuration-adaptive streaming.

THANK YOU

Q & A

