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Abstract—With the reduced hardware costs of omnidirectional
cameras and the proliferation of various extended reality ap-
plications, more and more 360◦ videos are being captured. To
fully unleash their potential, advanced video analytics is expected
to extract actionable insights and situational knowledge without
blind spots from the videos. In this paper, we present Om-
niSense, a novel edge-assisted framework for online immersive
video analytics. OmniSense achieves both low latency and high
accuracy, combating the significant computation and network
resource challenges of analyzing 360◦ videos. Motivated by our
measurement insights into 360◦ videos, OmniSense introduces
a lightweight spherical region of interest (SRoI) prediction
algorithm to prune redundant information in 360◦ frames.
Incorporating the video content and network dynamics, it then
smartly scales vision models to analyze the predicted SRoIs with
optimized resource utilization. We implement a prototype of
OmniSense with commodity devices and evaluate it on diverse
real-world collected 360◦ videos. Extensive evaluation results
show that compared to resource-agnostic baselines, it improves
the accuracy by 19.8% – 114.6% with similar end-to-end latencies.
Meanwhile, it hits 2.0× – 2.4× speedups while keeping the
accuracy on par with the highest accuracy of baselines.

Index Terms—360-degree videos, video analytics, networked
multimedia systems, resource management

I. INTRODUCTION

Recent years have seen an increasing number of affordable
omnidirectional cameras being released, e.g., Insta360 ONE
X2 [1] and GoPro MAX [2]. Unlike conventional cameras
that record videos only capturing a narrow field of view (FoV),
omnidirectional cameras record 360◦ videos [3] covering an
omnidirectional FoV without blind spots. Although such 360◦
videos are popular for providing immersive experiences for
human viewers [3], [4], their full potential has yet to be
reached. As true recordings of the physical world, the 360◦
videos can further help humans, robots, and devices understand
and interact with their surroundings if the video content can
be analyzed automatically.

This work is supported by a Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grant, a Canada Foundation for
Innovation (CFI) John R. Evans Leaders Fund (JELF, #40215), and a British
Columbia Knowledge Development Fund (BCKDF). Fangxin Wang’s work is
supported by the National Natural Science Foundation of China with Grant
No. 62102342 and The Major Key Project of PCL Department of Broadband
Communication. Fangxin Wang and Jiangchuan Liu are the corresponding
authors.

Inspired by the success of video analytics systems for regu-
lar videos [5]–[7], we believe immersive video analytics, which
applies vision algorithms to 360◦ video content for automated
knowledge extraction, will become the key to unlocking the
full potential of 360◦ videos. In years to come, omnidirectional
cameras combined with immersive video analytics will build
critical immersive visual sensing interfaces for a variety of
eXtended Reality (XR) applications. For instance, a self-
driving car can be fully aware of its surroundings by analyzing
the videos captured by a roof-mounted omnidirectional camera
so as to navigate safely. Police officers on patrol can learn the
big picture of activities taking place in large public spaces
through the video analytics results of body-worn omnidirec-
tional cameras to ensure that no emergencies go unnoticed.

While promising, achieving low-latency and high-accuracy
immersive video analytics faces severe computation and net-
work resource challenges. Contemporary video analytics sys-
tems boost accuracy with deep neural networks (DNNs), which
are known to be resource-intensive [5]. Typical mobile devices
are not even equipped with sufficient computation resources
to support analysis for regular videos [8], [9], let alone 360◦
videos that can be 4× to 6× larger than regular videos under
the same perceived quality [3]. Moreover, streaming the sheer
volume of 360◦ videos to remote data centers or clouds
over the dynamic public Internet [10] may incur excessive
bandwidth costs and unacceptable delays [11]. As a result, an
edge-assisted architecture, in which all or part of the analytics
workloads are offloaded to edge servers (or edge clouds) for
processing, is necessary to deliver an ideal solution.

There remain, however, distinct challenges toward edge-
assisted immersive analytics for 360◦ videos. A 360◦ frame is
internally represented as a spherical image, which is projected
onto a 2D plane to enable storage and delivery in practice
[12]–[14]. Yet, the projected panoramic image cannot be
simply treated as a regular video frame. This is because typical
off-the-shelf vision models are designed for and trained on
2D perspective images (PIs). The sphere-to-plane projections
inevitably introduce geometric distortions and border discon-
tinuities and thus hurt the accuracy of these models [14]–[16].
This precludes most vision models from being used for high-
accuracy panoramic image analysis. Furthermore, even with
vision models specifically designed for panoramic images [15],



[17], the bandwidth costs of uploading high-resolution (e.g.,
8K) panoramic frames to edge servers can hardly be afforded
by today’s network infrastructures [3], [11]. One workaround
is to project the entire spherical content to multiple distortion-
free PIs [18], [19]. However, reducing the latency of analyzing
all PIs without compromising accuracy remains a problem.

In this paper, we present OmniSense, an edge-assisted
immersive video analytics framework that achieves low la-
tency and high accuracy by adaptively utilizing vision models
with distinct resource demands and capabilities to analyze
different spherical regions of interest (SRoIs). Essentially,
OmniSense is empowered by off-the-shelf vision models and
does not require redesigns or retraining of existing models.
Thus, advances in vision models designed for regular videos
can also benefit 360◦ videos. To the best of our knowledge,
OmniSense is the first immersive video analytics framework
with a special focus on resource efficiency in practical systems.
Our contributions can be summarized as follows.
• By analyzing a 360◦ video dataset collected from the

real world, we identify the content characteristics and the
resource-saving opportunities of 360◦ videos.

• We propose OmniSense, an edge-assisted framework
that maximizes the overall accuracy under computational
power, network, and latency constraints by dynamically
and adaptively allocating different vision models to ana-
lyze the PIs corresponding to different SRoIs.

• We design a lightweight SRoI prediction algorithm and
a content-specific model performance estimation method.
Based on them, we further solve a latency-constrained
model allocation problem.

• We implement and deploy a prototype of OmniSense
with commodity devices for performance evaluation. Ex-
tensive evaluation results demonstrate that it improves the
accuracy of baselines by up to 114.6% with similar end-
to-end latencies and approximately hits or exceeds the
highest accuracy of baselines with 2.0× – 2.4× speedups.

II. BACKGROUND AND RELATED WORK

A. Online Analytics for Regular Videos

Online video analytics [20] has attracted a lot of attention in
recent years due to the increasing deployments of networked
cameras and the advances in computer vision algorithms. A
variety of systems [5], [6], [21], [22] have been designed to
automatically analyze the content of regular videos with vision
models. Early systems depend on resource-rich data centers or
clouds to realize high-accuracy analytics but need the support
of dedicated or high-quality network links [5], [6]. To facilitate
video analytics for cameras with wireless or unstable networks,
edge resources have been examined by existing systems [22]–
[24]. Despite the reduced network delays, resource-constrained
edge devices hardly achieve high accuracy without the help of
powerful backends [9], [20].

Thus, collaborating geo-distributed resources (e.g., device,
edge, and cloud resources) is considered promising to achieve
low latency and high accuracy [20]. Several techniques have
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Fig. 1: An illustrative example of spherical image projections
and spherical criteria. The yellow boxes are rectangular BBs,
and the white boxes are SphBBs (image source: [18]).

emerged in this context to improve accuracy while reducing
the amount of data transferred between front-end devices and
backends. One popular technique is to adjust video encoding
knobs (e.g., resolution) together with the task placement knob
(e.g., front-end devices or backends) to strike a balance be-
tween resource and accuracy [7]. Given that events of interest
can be sparse in time, video frame filtering [25] is explored
to save resources by filtering out irrelevant video frames on
front-end devices and only uploading event-related frames to
backends for further processing. Additionally, to overcome the
resource challenges of accommodating large DNN inference
on weak front-end devices, splitting the model inference across
front-end devices and backends to minimize the intermediate
data transfer overhead is also studied [26]. Recently, pruning
redundant information in video frames based on regions of
interest (RoIs) has proven to be another viable way to reduce
the amount of data being transferred and analyzed [9], [27].

B. Immersive Video Analytics

Several methods have been proposed to project a spherical
frame captured by omnidirectional cameras onto a 2D plane,
such as equirectangular projection (ERP) [12] and Cubemap
projection [13]. Accordingly, one natural idea to implement
immersive video analytics is directly applying off-the-shelf
vision models to the projected panoramic images [12]. Yet, the
projections unavoidably introduce geometric distortions and
discontinuities in panoramic images, negatively impacting the
accuracy of vision models initially designed for and trained
on flat images [14]–[16]. One example is illustrated in Fig. 1.
The upper-right 2D image, which is obtained from the left
spherical image via ERP, suffers from severe distortions in
the polar regions and discontinuities on the boundary.

One workaround is to denote the entire spherical content as
multiple distortion-free PIs via general perspective projections,
e.g., gnomonic projection [15] shown in Fig. 1. Each projected
PI corresponds to a partial FoV and can be well analyzed
by off-the-shelf vision models. For instance, Eder et al. [19]
propose to represent a spherical image as multiple planar
image grids tangent to a subdivided icosahedron and then
apply existing DNNs on these tangent images. Since it requires
processing a large number of PIs to minimize distortions and



Immersive Video Name Video Source Resolution Frames

New-Orleans-drive YouTube [29] 7680 × 3840 2100
Expressway-drive YouTube [30] 5760 × 2880 2100

Chicago-drive YouTube [31] 7680 × 3840 2100
Sunny-walk1 self-captured 5376 × 2688 2100
Sunny-walk2 self-captured 5376 × 2688 2100
Cloudy-walk self-captured 5376 × 2688 2100

TABLE I: Summary of our 360◦ video dataset.

cover the entire spherical content, this strategy is resource-
intensive and time-consuming. Yang et al. [18] present a multi-
projection method that partitions the sphere into four wide
overlapping sub-windows and maps each sub-window to a
plane by stereographic projection. They focus on improving
accuracy and do not address the computation and network
resource challenges in implementing practical systems.

Considering that convolutional neural networks (CNNs) are
widely adopted as feature extractors in popular vision models,
another line of research focuses on explicitly encoding invari-
ance against the projection distortions into CNNs [14], [15].
For example, Sun et al. [14] propose to increase convolutional
kernel size towards the polar regions to approximate the
distortions in ERP images. Coors et al. [15] instead propose to
process ERP images by adapting the sampling grid locations
of convolutional filters based on the geometry of the spherical
image representation. All these studies require redesigning the
convolutional filters and retraining (or at least fine-tuning) the
existing models. In contrast, we work toward a plug-and-
play underlying analytic framework for immersive videos, i.e.,
applying existing models trained on PIs without modifications.

III. MOTIVATION STUDY

In this work, we take one fundamental video analytics task,
object detection [28], as a case study to investigate the content
characteristics of 360◦ videos and motivate the design of
resource-efficient immersive video analytics systems.

A. Motivation Study Setup

Video dataset and models: We use a self-collected ultra-
high-definition 360◦ video dataset shown in TABLE I to
cover various real-world scenarios. The YouTube videos are
captured by omnidirectional cameras mounted on the roof of
cars driving through cities or expressways in the US. The self-
shot videos are captured by a GoPro MAX camera handheld
by a person walking through blocks or campus under different
illumination conditions. Each video has a length of 7 minutes
and is stored in the ERP format. In this work, we employ the
scaled-YOLOv4 [28] for the object detection task since it pro-
vides a set of model variants with varying resource demands
and accuracies, and the details are shown in TABLE II. The
model weights are pre-trained on the MS COCO dataset [32].
Generally, a model variant with a higher input size achieves
a higher accuracy at the cost of higher resource consumption.
Therefore, one can strike a good balance between resource and
accuracy by choosing appropriate model variants.

Model Name (Index) Model Size Input Size Location

YOLOv4-Tiny-416 (1) 23 MB 416 × 416 Mobile Device
YOLOv4-CSP-512 (2) 202 MB 512 × 512 Edge Server
YOLOv4-CSP-640 (3) 202 MB 640 × 640 Edge Server

YOLOv4-P5 (4) 271 MB 896 × 896 Edge Server
YOLOv4-P6 (5) 487 MB 1280 × 1280 Edge Server

TABLE II: Summary of model variants used in this work.

Immersive object detection criteria: Object detection aims to
find out the location and category of objects in an image. For
2D images, the locations of detected objects are typically an-
notated by rectangular bounding boxes (BBs). Unfortunately,
as illustrated by Fig. 1, due to the particular geometry of
spherical images, rectangular BBs (in yellow) on the ERP
image fail to bound objects on a sphere tightly and precisely.
Such BBs experience distortions on PIs tangent to the object
centers as well. As a result, several 360◦ object detection
criteria have been proposed to bound objects and calculate
the intersection-over-union (IoU) of two objects, e.g., BBs on
tangent planes [15], and circle BBs and IoUs [17].

In this work, we use the spherical criteria, including spher-
ical BB (SphBB) and spherical IoU (SphIoU), proposed in
[33] as it is fast and accurate. The white boxes in Fig. 1 show
what the SphBBs look like on the spherical image, ERP image,
and PIs. Specifically, a SphBB is directly defined on a sphere
and represented by a spherical region (\, 𝜙,Δ\ ,Δ𝜙), where \

and 𝜙 denote the longitude and latitude of the object center,
respectively; Δ\ and Δ𝜙 denote the horizontal and vertical
FoVs of the object’s occupancy, respectively. All values are in
degrees/radians.
Ground-truth immersive object detection results: Lacking
of fast and scalable 360◦ video annotation tools, we have de-
veloped our own annotation pipeline to generate approximate
ground-truth results offline. Since maximizing accuracy is the
first concern in ground-truth annotation, we have employed the
most accurate model, namely YOLOv4-P6, for this purpose.

We first run the model with a low confidence threshold
(e.g., 0.3) to obtain rough detection results from the input
ERP frame. Given that an object’s center is nearly consistent
across various spherical image representations [18], we extract
distortion-free PIs centered at the detected object centers via
gnomonic projection. Concretely, for each detected object, we
project a 60◦×60◦ spherical region centered at the object center
to a plane, where the vision model is applied for further precise
refinement. We only keep the detection results of objects
entirely enclosed by a PI to avoid repetitive detections at the
boundary. Then, the fine-grained detection results of the PIs
are back-projected to the sphere, and we obtain the SphBB
for each detection by spherical coordinate transformations.
Finally, spherical non-maximum suppression (NMS) [33] is
applied to all obtained SphBBs to produce the final results.

We empirically set the projected spherical region to 60◦ ×
60◦ to eliminate distortions while covering as many objects
as possible. For rare objects close to the camera, spanning
a wide FoV greater than 60◦, we manually annotate them.
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The intuition behind this approach is that due to the increased
input resolution, small objects that cannot be detected from
the panoramic image are likely to be detected from PIs. We
examined the detection results and found that this method is
approximately accurate, although it may occasionally ignore
tiny standalone objects.

B. Observations and Implications

Most objects in 360◦ videos occupy only a tiny area of a
frame. We first examine the visible size of objects in 360◦
videos. To quantify the object size, we analyze the ground-
truth detection results of all videos in our dataset. Particularly,
we calculate the area of each SphBB on a unit sphere1 and
normalize the SphBB area by the surface area of the sphere.
Fig. 2 shows the cumulative distribution functions (CDFs)
of normalized object area (NOA) for all 360◦ videos. For
comparison, we also plot the CDF of the NOA for COCO’s
training set2. As shown, the area occupied by objects in
360◦ frames is much smaller than that in conventional 2D
images, suggesting that processing a 360◦ frame as a whole
requires vision models capable of detecting tiny objects in
high-resolution input frames. Unfortunately, such models are
known to be slow and expensive [24]. The status-quo strategy,
i.e., downsampling the input frame to match the input size of
DNNs, makes tiny objects ambiguous, hence leading to poor
detection accuracy. For instance, if we downsample a 360◦
frame into 640× 640 pixels, a considerable portion of objects
with a normalized area between 10−5 to 10−4 will only take
an area from 4 to 41 pixels, which is too small to be detected.

The observations reveal the gap between the requirements of
spherical frames and the capability of the off-the-shelf vision
models. One prospective way to bridge this gap is employing
multiple models to analyze the entire spherical content in a
“divide-and-conquer” manner.
The area of objects in the same category differs by several
orders of magnitude. Fig. 3 further displays the CDFs of
NOA for two particular categories: person and car. As can
be seen, the area occupied by objects of the same category
can differ by three to four orders of magnitude. For the

1The area of a SphBB can be calculated by 2Δ\ sin(Δ𝜙/2) [33].
2The normalized object area (NOA) for 2D images is calculated by dividing

the area of the object’s rectangular BB by the area of the whole image.

Chicago-drive video, cars show intenser variations in size
than people, as people usually appear on the sidewalks at a
certain distance from the camera mounted on the roof of the
driving car. This is different from the Sunny-walk1 video,
where people can be very close to the handheld camera, thus
occupying a large portion of the captured view.

The observations suggest that the object size distribution is
video-specific, and one cannot simply tell the object category
from its visible size. Both object size and object category are
crucial reference factors in characterizing video content and
the capability of detection models.
The spatial distribution of objects in 360◦ frames is biased.
We next investigate the spatial distributions of objects in 360◦
frames. Specifically, we consider three spherical regions (SRs),
each covering a 60◦ × 60◦ FoV on the sphere. They are
denoted as SR-1 (0, 0, 60, 60), SR-2 (−90, 0, 60, 60), and SR-
3 (0, 90, 60, 60), respectively. We count the number of objects
whose centers fall into these SRs and show the variations in
Fig. 4. As shown, the spatial distribution of objects is biased,
and there are massive pixels without useful information for the
object detection task. For example, the SR-3, which captures
a view of the sky, contains rare objects of interest. As a result,
treating SR-3 the same as SR-1 and SR-2 would result in a
waste of resources. Furthermore, as verified in existing studies
[6], [24], leveraging high-accuracy models to process content
with simple scenes only leads to marginal accuracy gain.

The observations mean that despite the large size of 360◦
frames, many pixels can be pruned to save resources, and
using models with different capabilities to handle different
spherical regions can be a promising way to further improve
resource efficiency.
The content of 360◦ videos can be highly dynamic. Another
observation from Fig. 4 is that for both SR-1 and SR-2,
the number of objects varies substantially over time. This is
primarily due to changes in the scene as the camera moves. For
example, objects can frequently appear or disappear as the car
that the camera mounted turns or drives through intersections.
This indicates that even for the same SR, the most suitable
vision model may change over time.

This observation implies that an ideal resource allocation
scheme should be able to adapt to the variations in 360◦ video
content to maximize resource efficiency.
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IV. SYSTEM DESIGN

Our motivation study has revealed the resource-saving op-
portunities in immersive video analytics. Nevertheless, several
challenges must be overcome to implement a resource-efficient
system. To prune useless pixels in 360◦ frames and facilitate
the application of off-the-shelf vision models, we introduce
the spherical region of interest (SRoI) to describe an SR
containing objects of interest. Immediately, one challenge that
arises is how to identify SRoIs. This is not an easy one-time
job since the set of SRoIs is vulnerable to video scene changes.
Moreover, selecting the most suitable inference model for an
SRoI is tricky as it requires insights into the SRoI’s content
characteristics, the model’s capability, and even the network
conditions if the remote inference is enabled. In addition,
high-level applications tend to impose a fixed analysis latency
budget on one frame, regardless of the number of its SRoIs.
This makes the model choices of distinct SRoIs coupled since
allocating unnecessarily excessive resources to one SRoI may
deprive other SRoIs of the opportunity to improve accuracy.

We address the challenges by presenting OmniSense, an
edge-assisted framework for low-latency and high-accuracy
immersive video analytics. OmniSense hypothesizes that the
analytics workloads can be offloaded from a mobile device
capturing 360◦ videos to an edge server, which is physically
close to the mobile device. The mobile device runs cheap
models to analyze simple SRoIs and provide a minimum
accuracy guarantee when the network condition is poor, while
the edge server executes expensive models to analyze complex
SRoIs with improved accuracy in good network conditions.

Fig. 5 shows an overview of OmniSense. Specifically, for
each input ERP3 frame 1 , the SRoI predictor (§IV-A) first
predicts where the objects of interest are likely to appear based
on the detection results of the most recent frames. It then
feeds the coordinates and content characteristics vectors of the
predicted SRoIs to the resource allocator 2 , which estimates
the detection accuracy and inference latency of each model
on each SRoI (§IV-B). Given the analysis latency budget and
current network conditions, the resource allocator further

3Although we use ERP as the input frame format in this work, OmniSense
in principle could be applied to other 360◦ image representations as the
bounding boxes and computations are defined directly on the sphere.

Algorithm 1: SRoI Prediction Algorithm
Input: 𝑓 ; 𝛾; O (detected objects of the most recent 𝛿 frames)
Output: A set of predicted SRoIs R

1 Initialize SRoI sets S ← ∅, S′ ← ∅ ;
2 Get the number of all historical objects 𝑁 ← |O| ;
3 foreach object 𝑜 ∈ O do
4 if 𝑜 can be covered by an 𝑓 × 𝑓 FoV then
5 𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 ;
6 foreach SRoI 𝑠 ∈ S do
7 ℎ𝐹𝑜𝑉, 𝑣𝐹𝑜𝑉 ← merged horizontal and vertical

FoVs for the set 𝑠.𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 ∪ {𝑜};
8 if ℎ𝐹𝑜𝑉 < 𝑓 and 𝑣𝐹𝑜𝑉 < 𝑓 then
9 𝑠.𝑜𝑏 𝑗𝑒𝑐𝑡𝑠← 𝑠.𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 ∪ {𝑜} ;

10 𝑠.𝐹𝑜𝑉 ← (ℎ𝐹𝑜𝑉, 𝑣𝐹𝑜𝑉) ;
11 𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝑇𝑟𝑢𝑒; 𝑏𝑟𝑒𝑎𝑘 ;
12 if 𝑛𝑜𝑡 𝑚𝑒𝑟𝑔𝑒𝑑 then
13 𝑛𝑒𝑤_𝑠← create a new SRoI with 𝑜 ;
14 S ← S ∪ {𝑛𝑒𝑤_𝑠} ;
15 else
16 Create a new special SRoI 𝑠′ with 𝑜 ;
17 𝑠′.𝑐𝑒𝑛𝑡𝑒𝑟 ← 𝑜.𝑐𝑒𝑛𝑡𝑒𝑟; 𝑠′.𝐹𝑜𝑉 ← 𝛾 × 𝑜.𝐹𝑜𝑉 ;
18 Calculate content characteristics 𝑠′.𝑐𝑐𝑣 based on 𝑜 ;
19 𝑠′.𝛼← 1 / 𝑁 ;
20 S′ ← S′ ∪ {𝑠′} ;
21 foreach SRoI 𝑠 ∈ S do
22 Calculate SRoI center 𝑠.𝑐𝑒𝑛𝑡𝑒𝑟 according to 𝑠.𝐹𝑜𝑉 ;
23 Calculate 𝑠.𝑐𝑐𝑣 based on 𝑠.𝑜𝑏 𝑗𝑒𝑐𝑡𝑠;
24 𝑠.𝛼← |𝑠.𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 | / 𝑁 ;
25 𝑠.𝐹𝑜𝑉 ← ( 𝑓 , 𝑓 ) ;
26 R ← S′ ∪ S;
27 return R ;

solves a model allocation problem and outputs an execution
plan for the input frame (§IV-C). Once the execution plan is
received 3 , the inference scheduler extracts the PI for each
SRoI from the input ERP frame via gnomonic projection, and
the size of each PI is the input size of its allocated model.
After projection, PIs are immediately sent to appropriate local
or remote servers for inference 4 . Subsequently, the inference
results of all PIs 5 are integrated and transformed to obtain
the final spherical detection results, which will be further sent
back to the SRoI predictor for the SRoI prediction of the next
frame, and the latest network conditions will also be updated
to the resource allocator 6 .

A. Lightweight SRoI Prediction

In spite of the intense content variations in a 360◦ video,
consecutive frames have the smallest content differences. This
motivates us to use the detection results of the most recent
frames to acquire up-to-date knowledge about the spatial
distribution of objects. Similar to the SphBB, we use the
tuple (\, 𝜙,Δ\ ,Δ𝜙) to denote an SRoI. Although one SRoI
can be of any size, we assume that the horizontal and vertical
FoVs of all SRoI are 𝑓 to simplify the subsequent resource
allocation. Then, based on the historical detection results of the
most recent 𝛿 (2 by default) frames, we design a lightweight
prediction algorithm, as shown in Algorithm 1, to obtain a set
of SRoIs covering all historical objects.



The key idea is that for each historical object, we try to
merge it into an existing SRoI; if it fails, i.e., the merged
horizontal or vertical FoV exceeds 𝑓 , we will create a new
SRoI to enclose it. Setting an appropriate value for 𝑓 is tricky.
A small value may cut large objects apart, while a large value
may introduce projection distortions, both of which will lead
to inaccurate detection results. As such, we empirically set 𝑓

to 60◦ to avoid projection distortions and then deal with large
objects in a particular way. Specifically, we create a special
SRoI with an area 𝛾× (1.1 by default) the area of one object if
it cannot be enclosed by an 𝑓 × 𝑓 FoV. Since the special SRoI
can be very large, which may introduce projection distortions
to co-located small objects, we only keep the detection result
of the largest object for it.

Relying solely on the historical detection results can have
adverse cascading effects. For example, with a tight latency
budget, only simple models could be used for latency reduc-
tion. This may cause only a few objects being detected, thereby
reducing the number of SRoIs predicted for subsequent frames.
The reduced SRoIs may further reduce the number of de-
tected objects for subsequent frames. To break the vicious
circle, we design a spherical object discovery mechanism. It
opportunistically exploits the underutilized latency budget to
explore new objects by sending an ERP frame to the server for
inference. The detection results will be converted to SphBBs
and appended to the historical detection results for the SRoI
prediction of the next frame. This mechanism will be triggered
automatically if the number of predicted SRoIs is consistently
low. The rationale behind this is that although ERP detection
cannot precisely discover and locate all objects, it can help
discover new spherical regions where objects appear globally.

B. Content-Specific Model Performance Estimation

To allocate suitable vision models for the predicted SRoIs,
we need to estimate each model’s performance for each SRoI.
For one-shot object detection models like scaled-YOLOv4,
the model inference latency on a resource-fixed device is
approximately consistent and can be profiled offline. We thus
estimate the per-image inference latency of an object detection
model as its average inference time across thousands of runs
on the target device.

Due to the bias in the training dataset, the accuracy of a pre-
trained object detection model varies with image content. A
recent work [24] considered stationary cameras and attempted
to estimate a model’s accuracy for a 2D image by integrating
its detection capabilities at different object size levels with
the object size distribution of the image. However, as our
measurement results suggest, object size alone is insufficient to
characterize 360◦ video content captured by moving cameras.
Therefore, we consider both object size and category to design
an accuracy estimation method tailored to our problem.

We first group objects into three size levels: small, medium,
and large. Instead of using pixels as in [24], we utilize the
NOA as a unified scale measure to correlate object size in
2D and spherical images. Since our models are trained on
COCO, we set the size level thresholds to the 33.33 percentile

(0.0044) and the 66.66 percentile (0.0354) of COCO’s NOA
distribution, i.e., small objects have NOAs not greater than
0.0044, and medium objects have NOAs between 0.0044 and
0.0354. Based on this classification, we formally define the
general accuracy vector (gav) for model 𝑖 as

Ai = [𝑎𝑠1
𝑖 , · · · , 𝑎𝑠𝑛𝑖 , 𝑎𝑚1

𝑖 , · · · , 𝑎𝑚𝑛
𝑖 , 𝑎𝑙1𝑖 , · · · , 𝑎𝑙𝑛𝑖 ] (1)

where 𝑎𝑠𝑐
𝑖

, 𝑎𝑚𝑐
𝑖

, and 𝑎𝑙𝑐
𝑖

denote model 𝑖’s accuracy in detecting
small, medium, and large objects of a particular category 𝑐,
respectively; 𝑛 is the number of object categories. Ai can be
estimated by offline profiling publicly available datasets. This
work uses COCO, whose category number 𝑛 is 80.

Meanwhile, the dynamic content of an SRoI can be char-
acterized by its object size and category distribution as well.
We formally define the content characteristics vector (ccv) for
one SRoI 𝑗 as

Pj = [𝑝𝑠1
𝑗 , · · · , 𝑝𝑠𝑛𝑗 , 𝑝𝑚1

𝑗 , · · · , 𝑝𝑚𝑛
𝑗 , 𝑝𝑙1𝑗 , · · · , 𝑝𝑙𝑛𝑗 ] (2)

where 𝑝𝑠𝑐
𝑗

, 𝑝𝑚𝑐
𝑗

, and 𝑝𝑙𝑐
𝑗

represent the occurrence probabilities
of objects belonging to a specific category 𝑐 at small, medium,
and large size levels, respectively. As shown in Algorithm 1
(line 18 and line 23), the SRoI predictor estimates Pj for each
predicted SRoI 𝑗 based on its absorbed historical objects. For
instance, 𝑝𝑠𝑐

𝑗
is estimated as the frequency of small objects of

category 𝑐 in all historical objects merged by SRoI 𝑗 . With
the gav and ccv, the detection accuracy of model 𝑖 on SRoI
𝑗 can be estimated by Ai · Pj. In this way, we can estimate
the inference latency and detection accuracy of each candidate
model for each predicted SRoI, which will guide us to allocate
more resources to SRoIs that bring more accuracy benefits.

C. Latency-Constrained Model Allocation

Given the analysis latency budget 𝑇 for analyzing a 360◦
frame, the resource allocator is responsible for distributing
the limited resources across the predicted SRoIs to achieve a
high overall detection accuracy. Assume that we have a set
of models M = {0, 1, · · · , 𝑚} and a set of predicted SRoIs
R = {1, 2, · · · , 𝑟}. Let xi, j be a 0-1 indicator variable that
gets 1 if model 𝑖 is allocated to analyze SRoI 𝑗 . We set x0, j
to 1 to represent a special case where SRoI 𝑗 will be ignored
without processing. This happens when the SRoI contains very
little visual information or when the available resources are
exceptionally limited.

The goal of resource allocation is to find the optimal
execution plan, i.e., the optimal set X = {xi, j | 𝑖 ∈ M, 𝑗 ∈ R},
so that the overall detection accuracy can be maximized under
the analysis latency budget. Since SRoIs with varying numbers
of objects can contribute differently to the overall detection
accuracy, we introduce Ai, j = 𝛼 𝑗 ·Ai ·Pj to denote the weighted
accuracy achieved by allocating model 𝑖 to SRoI 𝑗 , where 𝛼j
is the probability of an object appearing in SRoI 𝑗 . It can
be estimated as the ratio of the number of historical objects
merged by SRoI 𝑗 to the number of all historical objects (line
19 and line 24 in Algorithm 1). Then, the latency-constrained
model allocation problem can be formally expressed as
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max
xi, j

∑︁
𝑗∈R

∑︁
𝑖∈M

Ai, j · xi, j

𝑠.𝑡.


L(X) ≤ 𝑇, X = {xi, j | 𝑖 ∈ M, 𝑗 ∈ R}∑

𝑖∈M xi, j = 1, ∀ 𝑗 ∈ R
xi, j ∈ {0, 1}, ∀𝑖 ∈ M, ∀ 𝑗 ∈ R

(3)

where L(X) is the analysis latency of the execution plan X.
We next introduce how to estimate L(X) in detail.

Let di, j denote the latency of analyzing SRoI 𝑗 with model
𝑖, and it can be divided into two parts: the preprocessing delay
and the inference delay. The preprocessing delay consists of
the projection time for the mobile device to acquire the PI of
the SRoI from the input frame and the optional encoding time
taken to compress the PI for network delivery (only for remote
inference). The projection and compression time of an SRoI
is related to the resolution of its projected PI. For example,
projecting an SRoI to a PI of 1280 × 1280 takes more time
than projecting it to a PI of 512× 512. The resolution of each
SRoI’s PI is set as the input size of its allocated model to
avoid resizing the image. Furthermore, PIs are compressed in
a lossless format by default to prevent accuracy loss caused
by the degraded image quality. Since there are 𝑚 models, the
resolution of PIs has 𝑚 options. For each option, we profile
the projection and compression delays of SRoIs on the target
device offline. Then, we can estimate the preprocessing delay
of each candidate model for each SRoI.

The inference delay includes the network delivery delay and
the model inference time. The former for local model inference
is 0. For remote model inference, we use an online passive
profiling method similar to that in [9]. Specifically, the server
calculates the mean network delivery delays of the most recent
𝜔 (7 by default) requests for each model and synchronizes
with the mobile device by piggybacking the updated network
conditions on the detection results. The model inference time
can be estimated with the method mentioned in §IV-B.

If the predicted SRoIs are processed one by one in the order
of preprocessing and inference, the problem (3) can be consid-
ered as a variant of the multiple-choice knapsack problem [34].
Unfortunately, such a serial scheme may introduce significant
latency, especially for weak mobile devices. We thus propose a
pipelining preprocessing and inference technique to accelerate
the end-to-end processing. The key enabler is that there are
no computational dependencies between SRoIs. The inference
of one SRoI and the preprocessing of the next SRoI can be

Algorithm 2: Dynamic Programming Algorithm
Input: {𝐴𝑖, 𝑗 }; {𝑑𝑖, 𝑗 }; {𝑑𝑃𝑖, 𝑗 }; {𝑑

𝐼
𝑖, 𝑗
}; 𝑇

Output: The optimal execution plan
1 S(1) ← ∅ ;
2 foreach model 𝑖 ∈ M do
3 if 𝑑𝑖, 1 ≤ 𝑇 then
4 S(1) ← S(1) ∪ {(𝐴𝑖,1, 𝑑𝑃

𝑖,1, 𝑑𝑖,1, [𝑖])};
5 for 𝑗 = 1 to 𝑟 − 1 do
6 S( 𝑗 + 1) ← ∅ ;
7 foreach quaternion (𝑣, 𝑡𝑃 , 𝑡, 𝑚_𝑙𝑖𝑠𝑡) ∈ S( 𝑗) do
8 foreach model 𝑖 ∈ M do
9 𝑐𝑢𝑟_𝑡 ← max(𝑡 𝑝 + 𝑑𝑖, 𝑗+1, 𝑡 + 𝑑𝐼

𝑖, 𝑗+1) ;
10 if 𝑐𝑢𝑟_𝑡 ≤ 𝑇 then
11 𝑐𝑢𝑟_𝑣 ← 𝑣 + 𝐴𝑖, 𝑗+1 ;
12 𝑐𝑢𝑟_𝑡𝑃 ← 𝑡𝑃 + 𝑑𝑃

𝑖, 𝑗+1 ;
13 𝑚_𝑙𝑖𝑠𝑡.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖) ;
14 S( 𝑗 + 1) ←

S( 𝑗 +1)∪{(𝑐𝑢𝑟_𝑣, 𝑐𝑢𝑟_𝑡𝑃 , 𝑐𝑢𝑟_𝑡, 𝑚_𝑙𝑖𝑠𝑡)};
15 Remove dominated execution plans from S( 𝑗 + 1) ;
16 Return the execution plan with the highest 𝑣 in S(𝑟) ;

naturally pipelined. Fig. 6 shows an illustrative example, where
the preprocessing of one SRoI starts immediately after the
preprocessing of the previous SRoI completes, i.e., at 𝑡1, 𝑡2,
and 𝑡4. The SRoI inference starts when the preprocessing is
completed and the required resources are ready.

Let 𝑑𝑃
𝑖, 𝑗

be the preprocessing delay of analyzing SRoI 𝑗

with model 𝑖 and 𝑑𝐼
𝑖, 𝑗

be its inference delay. It follows that
di, j = 𝑑𝑃

𝑖, 𝑗
+ 𝑑𝐼

𝑖, 𝑗
. Assume that previous SRoIs {1, · · · , 𝑗 − 1}

complete preprocessing at timestamp 𝑡𝑃 and complete infer-
ence at 𝑡. There are two cases depending on whether SRoI 𝑗

starts inference immediately after its preprocessing or waits.
If there is no wait (e.g., SRoI 1 and SRoI 3 in Fig. 6), the
pipelined analysis latency for SRoIs {1, · · · , 𝑗} will be 𝑡𝑃+di, j;
otherwise (e.g., SRoI 2 and SRoI 4 in Fig. 6), the latency
will be 𝑡 + 𝑑𝐼

𝑖, 𝑗
. By integrating these two cases, the pipelined

analysis latency can be updated as max(𝑡𝑃 + di, j, 𝑡 + 𝑑𝐼
𝑖, 𝑗
).

Following this way, we can estimate the pipelined analysis
latency L(X) of an execution plan X.

We further design an efficient dynamic programming algo-
rithm to find the optimal execution plan for a set of SRoIs
with a given processing order {1, 2, · · · , 𝑟}. This algorithm
is based on the concept of “dominated pairs” [35]. Let X𝑗

denote a feasible execution plan for SRoIs {1, 2, · · · , 𝑗} that
satisfies L(X𝑗 ) ≤ 𝑇 . For each feasible execution plan, we use a
quaternion (𝑣, 𝑡 𝑝 , 𝑡, 𝑚_𝑙𝑖𝑠𝑡) to record its cumulative accuracy,
preprocessing completion time, processing completion time,
and allocated model list. We say a feasible execution plan X𝑗

dominates another feasible execution plan X′
𝑗

if the following
constraints are satisfied.

𝑣(X𝑗 ) ≥ 𝑣(X′𝑗 ), 𝑡 𝑝 (X𝑗 ) ≤ 𝑡 𝑝 (X′𝑗 ), 𝑡 (X𝑗 ) ≤ 𝑡 (X′𝑗 ) (4)

According to this definition, the dominated execution plans
can be safely pruned. The details are shown in Algorithm 2,
where S( 𝑗) is the set of all feasible execution plans for SRoIs
{1, 2, · · · , 𝑗}. Note that this algorithm reports the optimal



execution plan for a given processing order of SRoIs. Applying
this algorithm to all possible processing orders can obtain the
global optimal execution plan. Nevertheless, doing so incurs
significant latency with only minor accuracy gains compared
with directly using the execution plan reported on a randomly
generated processing order. Thus, we finally choose the latter
method to approximate the global optimal execution plan.

Based on the obtained execution plan, the inference sched-
uler acquires PIs and sends them to appropriate locations for
inference. It then converts the inference results to SphBBs.
Spherical NMS with a default threshold 0.6 is further applied
to the integrated SphBBs to prevent the same objects from
being detected repeatedly.

V. PERFORMANCE EVALUATION

A. System Implementation

We implement a prototype of OmniSense with commodity
devices. The mobile device is an Nvidia Jetson TX2 [36] mo-
bile development board, a typical embedded smart computing
device. The edge server is a desktop computer with an Intel i7-
6850K CPU and an Nvidia GeForce GTX 1080Ti GPU. The
mobile device and the edge server are connected via an ASUS
AC1900 router, and they both run the Ubuntu 18.04 OS. The
prototype is implemented in Python to allow easy integration
with deep learning-based vision models. All video and image
operations are implemented with the OpenCV library [37].
Images, control messages, and detection results are passed
between the mobile device and the edge server with a high-
speed universal messaging library, ZeroMQ [38].

B. Evaluation Setup

Videos and models: The video dataset and object detection
models for evaluation are those demonstrated in TABLE I and
TABLE II, respectively. Videos are stored on the mobile device
in the ERP format and fed into the system frame by frame.
Networks: We employ the Linux traffic shaping tool tc to set
the outgoing bandwidth of the mobile device to 17.9 Mbps
to match the average 5G upload bandwidth of a major US
mobile network provider (T-Mobile) [39]. This value is used
by default unless we study the influences of network settings.
Performance Metrics: (1) Spherical mAP (Sph-mAP). It is
a spherical version of the standard mean Average Precision
(mAP) metric [40] that is widely used for 2D object detection.
When applied to 360◦ videos, the rectangular BB (regular IoU)
is replaced with the SphBB (SphIoU) [33]. The Sph-mAP is
calculated against the ground-truth detection results introduced
in §III-A. (2) Mean End-to-end (E2E) latency. It is the mean
time taken to detect one frame, from feeding a frame into the
system to obtaining the final detection results.
Baselines: (1) ERP: This baseline directly feeds one ERP
frame into an object detection model. To make the final results
comparable, we further convert the detected rectangular BBs to
SphBBs. (2) CubeMap: It is based on the Cubemap projection
[13], [41] of 360◦ videos. To be specific, it first projects the
input frame onto a cube’s six faces, and each face corresponds
to a PI with a 90◦×90◦ FoV. The PIs are subsequently analyzed
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Fig. 7: Overall performance comparisons of various methods.

by an object detection model. The detection results are further
integrated and back-projected to the sphere to obtain the final
detection results.
Latency control: To accommodate a wide range of latency
budgets for various applications, OmniSense exposes an API
to allow latency control. It is the per-frame analysis latency
budget 𝑇 described in §IV-C. We investigate the performance
of OmniSense with 𝑇 in a reasonable range from 500
ms to 4, 500 ms. Specifically, we set the value of 𝑇 based
on the end-to-end latencies of baselines to make the results
comparable. Let 𝑇𝑒𝑖 (𝑇𝑐𝑖) denote the 95% of the mean E2E
latency of ERP (CubeMap) using model 𝑖 for inference. We
accordingly report the performance of OmniSense under the
representative latency budgets 𝑇𝑒4, 𝑇𝑐2, 𝑇𝑐3, and 𝑇𝑐4.

C. Evaluation Results

1) Performance Improvement: We first present the overall
performance of OmniSense as well as baselines on various
videos in Fig. 7. As one can see, compared to the baseline with
a similar mean E2E latency, OmniSense always yields higher
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Fig. 8: System overheads on the mobile device. The delays
are normalized by the corresponding mean E2E latencies.

accuracies, achieving 19.8% – 114.6% accuracy improvements
relatively, about 58.3% on average. For example, with 𝑇 set to
𝑇𝑐2, OmniSense reaches a Sph-mAP of 11.2% with a mean
E2E latency of 1, 409 ms on the Chicago-drive video,
while the corresponding CubeMap baseline only achieves a
Sph-mAP of 6.2% at the cost of 1, 415 ms. This indicates that
OmniSense indeed successfully identified the ever-changing
SRoIs and matched them with appropriate models. Meanwhile,
benefiting from the more reasonable resource allocation strat-
egy, OminiSense achieves an accuracy above or competi-
tive with the highest achievable accuracy of baselines while
significantly reducing the mean E2E latency (2.0× – 2.4×
speedups). For example, it takes the CubeMap baseline 8, 202
ms to achieve a Sph-mAP of 24.2% on the Sunny-walk1
video, while OmniSense obtains a similar accuracy of 25.4%
with an approximate 2.0× speedup (4, 173 ms).

2) System overhead on mobile devices: The primary system
overheads of OmniSense come from its SRoI prediction,
model allocation, and post-processing. We demonstrate the
breakdowns of their time consumption in Fig. 8. As shown,
the overall system overhead is within 2.5% of the mean E2E
latency for the Chicago-drive video and within 1% for the
Sunny-walk2 video. With the same analysis latency budget
setting, these two videos have comparable mean E2E latencies.
Their overhead discrepancy is because the Chicago-drive
video has more predicted SRoIs and SphBBs. Hence, it takes
longer for the video to allocate vision models and transform
the detected BBs, leading to higher system overheads. Despite
this, the system overheads for both videos only account for a
small fraction of the E2E latency. This means that the system
design of OmniSense is lightweight and efficient and verifies
the effectiveness of latency control.

3) Sensitivity to image compression quality: OmniSense
compresses the projected PIs in the lossless PNG format by
default before sending them to the edge server. Nonetheless,
employing lossy image formats like JPEG can significantly
decrease the image size, further reducing network delivery
delays. The saved latency may be used for model upgrades,
i.e., selecting a more accurate model with a higher latency,
thus improving the overall accuracy. To study the impacts of PI
compression quality, we adjust the JPEG compression quality
parameter (higher values indicate higher image quality) and
show the performance variations of OmniSense in Fig. 9a.

As shown, OmniSense maintains a similar mean E2E la-
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Fig. 9: Sensitivities to image qualities and network conditions.

tency under the same analysis latency budget regardless of the
image compression quality. This indicates that OmniSense
can adaptively use the saved latency to upgrade the analysis
models. By trading image quality for more accurate models,
moderate compression (i.e., jpg-100) can lead to an accuracy
gain compared with lossless compression. However, aggres-
sively compressing PIs does not always benefit accuracy. For
instance, as the quality parameter decreases from 100 to 25,
accuracy shows a downward trend and is consistently lower
than that of lossless compression. This suggests that the accu-
racy drops caused by the severe image quality degradation can
hardly be offset by the benefits brought by the reduced network
delivery delays. Choosing a suitable PI compression quality
to maximize accuracy requires careful trade-offs between the
video content, network conditions, and model characteristics,
and we leave it to future work.

4) Sensitivity to network settings: Fig. 9b demonstrates the
impacts of varying network bandwidths on the performance
of OmniSense. When the available bandwidth becomes
scarce (i.e., 8.95 Mbps), the network delivery delays in-
crease. OmniSense adaptively trades accuracy for latency by
switching to cheaper models. Conversely, when the available
bandwidth becomes abundant (i.e., 35.8 Mbps), the network
delivery delays decrease. OmniSense takes advantage of the
saved latency to improve accuracy by aggressively choosing
more expensive models. This confirms that OmniSense can
adapt to variations in network resources while seizing every
chance to improve accuracy. Also, as the bandwidth increases
(e.g., > 35.8 Mbps), the network delivery delay will no longer
be the system bottleneck. Allocating excessive bandwidth in
this case only results in marginal accuracy improvements.

VI. CONCLUSION

Immersive video analytics will be essential in unlocking
the potential of increasingly deployed omnidirectional cam-
eras if the significant computation and network resource
challenges can be addressed. Motivated by our measurement
insights into diverse 360◦ videos, we have proposed an edge-
assisted immersive video analytics framework OmniSense.
To adapt to the dynamic video content and network conditions,
OmniSense introduces a lightweight algorithm to identify
the ever-changing SRoIs. It then smartly allocates the most
suitable local or remote model for each predicted SRoI to
achieve low latency and high accuracy. Extensive evaluations
have verified the effectiveness and superiority of OmniSense.
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