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AdaDSR: Adaptive Configuration Optimization for
Neural Enhanced Video Analytics Streaming
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Abstract—Neural-based super-resolution (SR) has achieved
great success in enhancing image or video quality, creating new
opportunities for building bandwidth-efficient and high-accuracy
video analytics (VA) systems. Intuitively, with the help of SR
techniques, cameras only need to send downsampled low-quality
frames to the server in a canonical edge-assisted video analytics
framework. The server-side SR model then upscales the quality
of received frames for the subsequent video analytics tasks,
incurring thus substantially reduced bandwidth consumption.
Nonetheless, as revealed by our measurement results on real-
world video clips, higher delivery quality does not necessarily
lead to higher analysis accuracy. This motivates us to study
the content-adaptive downsampling and upscaling ratio selection
problem for video analytics streaming. We propose a SR-based
video analytics framework, named AdaDSR that can dynamically
select the optimal downsampling and upscaling ratios so that the
system utility can be maximized. AdaSDR is configured to balance
the tradeoffs among accuracy, network cost, and computational
cost. It further leverages the temporal consistency of videos to
skip trivial decisions so that the camera’s processing overhead
can be reduced. Experiments on real-world video datasets demon-
strate that AdaDSR can improve the average utility by 7.2%-
18.4% when compared with state-of-the-art approaches under
diverse video scenes.

Index Terms—super-resolution, video analytics, edge comput-
ing, configuration optimization

I. INTRODUCTION

W ITH the development of deep neural network (DNN)-
based computer vision (CV) models and an increasing

number of camera deployments, recent years have witnessed
an explosive growth of video analytics tasks, such as object de-
tection, and semantic segmentation [1] [2] [3]. Currently, most
front-end devices stream their captured videos to resource-
rich cloud servers to achieve high analysis accuracy. However,
cloud servers typically reside far away from these front-end
devices, which introduces significant network consumption for
large-volume video transmission. Streaming filtered frames to
the cloud server can affect the inference accuracy due to the
loss of image details. On the other hand, analyzing videos
directly on front-end devices could avoid the network cost,
however, it cannot support high-accuracy video analytics at
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need due to the limited computational resources of most front-
end devices. Therefore, it is urgent to find a solution to achieve
high-accurate video analytics with an affordable network cost.

Super-resolution (SR) is an emerging CV technique aiming
at recovering the resolution of low-quality images in order to
achieve better visual quality [4]. It upsamples low-resolution
images to an expected high resolution, by using neural net-
works like SRCNN [5], VDSR [6], ESPCN [7], etc., which
are pre-trained to minimize the loss function of high/low
resolution pairs of images in the given training set. Previous
studies on SR mainly focus on improving human-perceived
visual quality for human-oriented video streaming applications
[8] [9]. In recent years, with the rise of machine-centric
streaming systems, where videos are streamed and consumed
directly by machines that execute intelligent models, analytics-
aware SR models are further developed to improve inference
accuracy. These models embed analytics-related objectives
into the loss function and have shown promising results [10]
[11].

However, existing analytics-aware SR systems for video
analytics tasks are far from optimal. First, our later mea-
surement study indicates that the SR operation dominates the
computational cost and is affected by both the input frame size
and the SR upscaling ratio. We further reveal that the inference
accuracy may not drop when using an SR model with a lower
upscaling ratio. Therefore, when the downsampled frames are
recovered to their original quality, as current solutions do [10]
[11] [12], unnecessary computation exists without bringing
extra benefit in an accuracy improvement. Second, many works
[12] choose to maintain a Pareto-frontier solution in the space
of important system dimensions, e.g., accuracy and latency,
without considering the effect of video content. Although it
utilizes the temporal consistency of videos, it cannot adapt to
fine-grained video content dynamics.

To overcome the aforementioned limitations, we propose
AdaDSR, a content-adaptive configuration selection framework
that fully exploits the potential of SR techniques in helping
video analytics streaming tasks. AdaDSR intelligently adjusts
the frame downsampling and SR upscaling ratios, referred
to as configurations, to balance the tradeoff among inference
accuracy, network cost, and computational cost. It is composed
of a feature extractor, a network cost estimator, and a con-
figuration selector. The feature extractor is constructed based
on a CNN backbone to extract the frame-level foreground
objects’ high-level features; the network cost estimator is
designed to estimate the video segment transmission volume
based on a random forest regressor. The configuration selector
predicts the optimal configuration for video frames based on
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the results from previous modules. When deployed online,
AdaDSR further utilizes a frame filtering strategy by leveraging
temporal consistency of videos to further save the network
and computational cost. In summary, our contributions can be
summarized as follows:

• We reveal the complex relationship between downsam-
pling and SR upscaling ratio when helping the video ana-
lytics tasks. This motivates us to decouple the decisions of
adjusting these two ratios to fully unleash SR’s potential
in system improvement.

• We formulate the SR-based video analytics problem as a
utility maximization problem by controlling the configu-
ration setting of SR models. Our comprehensive utility
function considers the analytics performance, network
cost, and computation cost, which are crucial factors to
video analytics.

• We design a novel utility-driven configuration selector
to learn the complex relationship between video content
and the optimal configuration. An online frame-skipping
mechanism is further designed to reduce the camera-side
processing overhead.

• Extensive experiments on real-world video clips show
that our method can improve the performance by 7.2%
to 18.4% on average, compared with state-of-the-art
baselines.

The remainder of this paper is organized as follows. We con-
duct a literature review on SR-based video analytics systems in
Section II. Section III presents the measurement results and the
resulting motivation. Section IV presents the system models
and problem formulation. Section V proposes our design in
making the adaptive decisions for selecting SR configuration.
Section VI presents the evaluation of methods. We finally draw
a conclusion in Section VII.

II. RELATED WORK

A. SR for Improving Quality of Experience (QoE)

SR is most widely used to improve the frame image quality
and thus improving users’ visual experience for video watch-
ing. In the video streaming scenario, the bandwidth constraint
and the need for higher visual quality are the major motivation
for SR-based streaming systems. Many works design or retrain
an SR network to enhance the quality (always evaluated
as reconstructed error) of the images under strict network
requirements. For example, a light-weighted SR is designed in
[13] to reconstruct the image and reduce video stalling time
in the scenario of HTTP video adaptive streaming [14] [13].
Liu et al. [15] deploy actor-critic reinforcement learning to
jointly decide the configuration of light-weighted and large-
scale SR models in the mobile devices and edge servers
respectively, to improve users’ QoE. Zhang et al. [8] select the
frame bitrate and SR reconstruction factor to reduce the frame
reconstruction loss as well as the rebuffering time. SR is also
used in [9] [16] to improve the client-side video resolution and
reduce the stalling time under bandwidth constraints for 360-
degree video streaming. SR technique is also employed [17]
in the traditional edge caching system where users could have
access to high-quality video with a higher data hit ratio through

adaptive bitrate (ABR) algorithms, considering the bandwidth
fluctuation. However, these above works do not necessarily
improve video analytics tasks, as shown in Sec. II-B, despite
their ability to enhance the human-oriented visual quality.

B. SR for Enhancing Video Analytics

Recently, many researchers have been dedicated to applying
the SR technique to machine-centric video streaming tasks,
like object detection [18] [19], semantic segmentation [20]
[21], etc. Shan et al. [22] utilize online learning to adaptively
train the SR models under various network requirements.
Aguilar et al. [23] use SR to improve the small-object detec-
tion accuracy in video clips. Wang et al. [24] train customized
object detection models and evaluate the inference accuracy
with different upscaling factors. Mu et al. [25] improve the SR
process by replacing the motion estimation and compensation
with a pyramid deformable CNN network to improve the
overall inference accuracy. Temporal consistency inter-frame
learning is applied [26] in SR to make the reconstructed videos
consistent.

In addition to these efforts from the computer vision field,
a growing number of system researchers have started to apply
SR to increase the inference accuracy of video analytics
tasks under the constraint of network conditions. Wang et al.
[12] train the SR model with different upscaling factors to
increase the average accuracy. It constructs a Pareto frontier
between frame compression/downsampling rate and inference
accuracy to optimize the configuration selection under the
bandwidth constraint, by applying the controlling mechanism
designed in AWStream [27]. Zhang et al. [10] follow the
work and further improve the tail inference accuracy. They
are concerned more about the objects which are difficult to
detect. However, all of the works above neither consider the
SR model computational cost, nor decouple the selection of
frame downsampling and SR upscaling ratio, which wastes
a lot of server-side computational resources and lead to sub-
optimal analytics results.

III. MOTIVATION

In this section, we explore real-world video datasets, and
reveal the non-trivial relationship between the inference accu-
racy and the configuration selected for utilizing super- reso-
lution. We select six different configurations to analyze three
video clips [28] [29] [30] (downloaded with 720p, about 3,600
frames are analyzed) captured by surveillance cameras in the
US, posted on YouTube. Each configuration refers to a specific
joint selection of segment downsampling and SR upscaling
ratio as shown in Table I. For example, configuration 2 means
that the camera first downsamples the frames from 720*1280
to 180*320 (downsampling ratio 4×), then the server upscales
the downsampled frames to 360*640 (upscaling ratio 2×).

The analyzed video frames cover a variety of real-world
scenarios (e.g. Town Square, People Square, and crossroads)
and illuminations (e.g. day and night). The three most common
objects (cars, traffic lights, and pedestrians) are chosen as
the detection targets. We apply the pre-trained SR models
introduced in [31], which is widely used in the CV community
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Fig. 1. Probability distribution of each configuration hitting the highest accuracy for each frame. (a) Overall distribution; (b) Distribution with regard to object
size; (c) Distribution with regard to object overlap ratio.

TABLE I
SR INFERENCE TIME OF TESTED CONFIGURATIONS (UPSCALING RATIO 1×
MEANS THAT NO SR MODELS ARE USED, AND THE CORRESPONDING TIME

IS MARKED AS ’-’.)

# Config. Downsampling Upscaling TSR (ms)
1 4× 1× -
2 4× 2× 763 ± 26
3 4× 4× 1011 ± 58
4 3× 1× -
5 3× 2× 1089 ± 15
6 3× 4× 1539 ± 87

due to their invulnerability to alternative blurring kernels. We
use yolov7 [32] and mAP@0.75 as our object detection model
and accuracy metric, respectively. Table I also lists out the
average SR inference time of a single frame1 in the last
column. We summarize the following insights observed from
the measurement study:
(1) Different configurations lead to different network and
server-side computational costs. Table I shows that when we
downsample the frame to a smaller resolution and apply an SR
model with a larger upscaling ratio, it takes longer to run the
SR inference model. For example, config. 6 costs the highest
running time, since it operates on a larger frame resolution,
and uses a higher SR upscaling ratio. Therefore, various
configurations could lead to dramatically different server-
side GPU computational costs, represented by SR inference
time. Moreover, after downsampling the video segments (each
comprises 60 frames) in our dataset to different resolutions, we
find that the average data sizes of transferred video segments
for downsampling ratio of 4×, 3×, and 2× are about 220
KB, 296 KB, and 352 KB, respectively. Therefore, streaming
frames with a higher resolution over the network incurs a
higher data transfer overhead and thus higher network costs.

1The experiment was tested on Ubuntu, with dual Tesla V100 32GB GPU
cards, an Intel Xeon 6226 2.7 GHz CPU card, and 8GB memory.

(2) Separately considering the frame downsampling and
SR upscaling ratio is necessary. Existing works [11] [10]
tend to use the same ratio for downscaling and upscaling.
While it seems intuitive that frames should be restored to
their original visual quality to achieve the maximum accuracy
performance, our measurement indicates the contrary, namely,
restoring the image quality to a level lower than its original
quality can achieve the highest accuracy in some cases. Fig.
1(a) shows the overall frame-level distribution of each con-
figuration hitting the highest accuracy. We find that consistent
frame downsampling and upscaling ratio does not always yield
the highest accuracy (e.g., config. 3 does not always lead to
the highest accuracy among config. 1, 2, and 3). About 84.8%
of frames achieve the highest accuracy when using different
ratios for downsampling and upscaling, necessitating adaptive
separate optimization. Furthermore, when choosing the best
and worst configurations, we get mAP@0.75 of 71.3% and
48.9%, respectively, revealing a huge impact of the chosen
configuration on the detection accuracy.

When it comes to jointly considering the inference accuracy,
network cost, and computational cost, we find that decoupling
the selection of downsampling and SR upscaling ratio has
more benefits. Config. 2 may outperform config. 3 (the one
with the same downsampling and SR upscaling ratio) for both
a higher inference accuracy sometimes, and a much lower
computational cost. Similarly, a decoupling selection may lead
to a higher accuracy and a much lower network cost.

The above findings reveal that a separate tuning of frame
downsampling and SR upscaling ratios is necessary for op-
timizing inference accuracy, computational cost, and network
consumption.
(3) Simple vision features are insufficient to unearth the
optimal combination of downsampling and upscaling ratio.
Recent related works on video analytics, such as [33], choose
low-level features, such as foreground object size, to be the
hint for configuration selection. But it remains a question on
whether such features could provide useful information on the
selection of our configuration knobs, i.e. frame downsampling
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Fig. 2. SR-enhanced video analytics pipeline.

and SR upscaling ratio. We thus select two commonly used
vision features, namely, object size and overlap ratio, to
examine the possible relationship between the content and
the optimal combination of downsampling and upscaling ratio.
Object size refers to the average foreground object sizes, while
overlap ratio refers to the average of the foreground objects’
overlapping areas divided by total sizes. These features could
be extracted by simply running a background extractor [34],
or using an edge detector [35]. Frames are grouped according
to three levels of object size (in terms of the ratio of areas
in the image): small (<1/64), medium (1/64 − 1/16), and
large (>1/16), as well as three levels of overlap ratio: <1%,
1% − 3%, and >3%. The division is set to have a roughly
equal proportion of samples. Fig. 1(b) and (c) show the
proportion of accuracy-optimal configurations with regard to
these two handcrafted features. Unfortunately, we find that
optimal configurations are still evenly distributed in different
groups, indicating that these low-level visual features alone
cannot guide us to make appropriate configuration choices.

The above observation reveals a more comprehensive con-
figuration selector is required to extract high-level frame
features and capture the relationship between content and the
SR configuration decision.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the framework of our SR-
enhanced video analytics pipeline, model the key factors in our
system, and finally formulate the studied problem. We provide
a summary of important notations and related meanings in
Table II.

A. SR-enhanced Video Analytics Pipeline

We consider a typical video analytics system where sta-
tionary cameras with limited computing power continuously
stream videos to the remote server for conducting accurate
video analytics tasks, as shown in Fig. 2. Due to the high

TABLE II
SUMMARY OF MAIN NOTATIONS

Notation Description Unit
I Frame index set of a segment. -
J Segment index set of the analyzed video. -
D Candidate of downsampling ratio. -
U Candidate of SR upscaling ratio. -
T Time period of observation. s
Nj,d Network cost for downsampling rate d of

segment j.
$

Ñj,d Network cost estimation for downsampling
rate d of segment j.

MB

vj,d Transmitted volume after selecting down-
sampling rate d of segment j.

MB

c Cost charged per unit data volume. $ / MB
Ci,j Server computational cost for frame i in

segment j.
J

P Working power of the server. W
ti,j Total inference time on the server. s
sj,0,sj,1,sj,2 First, middle, and last frames of segment j -
Ψ Average utility for the analyzed video. -
A, N , C Average normalized value of accuracy, net-

work cost, and computational cost for the
analyzed video.

-

ω1, ω2, ω3 Coefficients serving for balancing accuracy,
network cost, and computational cost.

-

potentials of SR for video analytics, and limited computing
resources equipped in smart cameras, we put the SR enhancing
and video analytics processes to the server, which could be
equipped with rich computational resources. We focus on
retrospective video analytics applications [36] [37] such as
incident investigation and traffic volume analysis, which care
about transmission traffic cost rather than latency.

Specifically, the camera first encodes the buffered frames
into segments (each of which consists of s frames) and
downsamples them to the desired resolution by using a certain
codec. It then transmits them to a cloud server through a
network link for frame inference. When the downsampled
segments reach the server, they are decoded into frames, and a
customized SR model (if necessary) is utilized to enhance the
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frame quality. The frames are then fed into a video analytics
model for final inference.

We consider the analyzed frames to be captured sequen-
tially in a time window of observation T . These frames are
partitioned into J segments, each of which is composed
of I frames. The configuration selector is deployed on the
camera to determine the segment downsampling and frame
SR upscaling ratio. D and U are the sets comprising all the
candidate downsampling and SR upscaling ratios, respectively.

B. Network Cost Model

Typically, videos are compressed in the unit of segments
comprising several consecutive frames, in order to save the
compressed data size by leveraging the temporal consistency
of videos. We can model the network cost Nn

j,d after selecting
the downsampling knob d ∈ D, for the jth segment as:

Nj,d = c · vj,d (1)

where vj,d is the file size of the jth segment after selecting
the downsampling knob d ∈ D, and c is the cost charged per
unit data volume.

C. Server Computational Cost Model

When the server receives a compressed segment from the
camera, it will decode the segment into frames and execute
(if necessary) customized SR inference according to the in-
struction from the camera, and then feed the frame to the
object detection model. We perform customized SR upscaling
for each frame since we find that the choice of SR upscaling
ratio leading to the highest inference accuracy is vulnerable to
motion changes, and thus frame-level upscaling are conducted
for better accuracy preservation.

The server computational cost is highly related to the server-
side inference time. The total inference time is a sum of the
SR inference time (if necessary), as well as the running time
of the object detection model. So the total time for inferring
the ith frame is:

ti,j = tSR
i,j + tanali,j (2)

where tSR
i,j is the SR inference time, and tanali,j is the time for

completing video analytics tasks.
The server computational cost (C) is a product of the

working power of the server (where GPU serves as the
dominant hardware for conducting the computational task),
and the computational time. Then, for the ith frame of the jth

segment, we can express the server computational cost as:

Ci,j = P · ti,j (3)

where P is the average working power of the server which
runs the inference tasks.

Then, we present several findings to simplify the server
computational cost model.

• One finding is that the inference time of the video
analytics tasks, specifically multi-object detection in our
work, i.e. tanal·,· in Eq. 2, is negligible compared with
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Fig. 3. System overview. Dashed arrow line represents AdaDSR’s control
pipeline. Solid arrow line represents the video analytics streaming pipeline.

SR inference time tSR
·,· . Therefore, the difference of tanal·,·

among configurations does not affect the relative utility
much. We thus can neglect tanal·,· in Eq. 2 when computing
or comparing the utility function.

• Also, it has been shown in Table I that the standard
deviation of SR inference time for each configuration
is quite small, compared with the average SR inference
time. Thus, we could consider each configuration has a
fixed server computational cost, across all the frames. In
other words, tSR

·,· could be considered only dependent on
the selected configuration (if the frame raw size is fixed).

Therefore, the server computational cost could be approx-
imated only by captured frame resolution and the selected
configuration.

D. Utility Model

Inference accuracy, network transmission cost, and server-
side computational cost are three metrics that users mostly
care about for retrospective video analytics. However, there
exists a complex trade-off among these metrics. As shown
in Sec.III, the inference accuracy is not only affected by the
joint configuration selection of both segment downsampling
and frame SR upscaling ratio, but it may also have distinct
performances for the same configuration across various frame
content. We introduce the following utility function Ψ to
incorporate all three dimensions.

Ψ = ω1A+ ω2(1−N) + ω3(1− C) (4)

where ω1, ω2, ω3 are the non-negative normalized weights
balancing among the average normalized value of analysis
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accuracy (A), network transmission cost (N ), and server-side
SR computational cost (C). For example, some users care most
about inference accuracy, with little concern about network or
server computational cost, then the ω1 should be set to be
much greater than ω2 and ω3. Under another scenario, the
user may only have a very limited budget for running tasks
on a server, and thus server computational cost becomes their
priority concern, then ω3 should not be set much smaller than
ω1 and ω2. In other words, the weights could be determined
according to users’ preferences. The purpose of designing
customized weights is to showcase the versatility of our
framework in accommodating diverse preferences. In practice,
predefined weight combinations can be made available to
users. Users can conveniently select the weight combination
that meets their needs.

E. Problem Formulation

Our goal is to maximize the user-defined utility function Ψ,
by adaptively selecting the configuration knob for each frame
in the analyzed period.

We use the decision variable xd,u
i,j to represent our configu-

ration selection in the candidate pool. xd,u
i,j is set to be 1 when

we choose the dth configuration of frame downsampling ratio
(from D) along with the uth configuration of SR upscaling
ratio (from U), for the ith segment’s jth frame.

Formally, our utility maximization problem is formulated as
follows:

max
xd,u
i,j

Ψ (5)

s.t.
∑
d∈D

∑
u∈U

xd,u
i,j = 1 ∀i ∈ I ∀j ∈ J (6)∑

j

∑
u∈U

xd,u
i,j ∈ {0, s} ∀d ∈ {1, 2..., |D|} ∀i ∈ I

(7)

xd,u
i,j ∈ {0, 1} ∀d ∈ {1, 2..., |D|} ∀u ∈ {1, 2..., |U|}

∀i ∈ I ∀j ∈ J (8)

Constraints (6) and (8) ensure that for each frame, we
select and only select one configuration in the candidate pool.
Constraint (7) ensures that the downsampling ratios are the
same for all frames in a segment.

Due to the intricate relationships between SR configurations
and our accuracy, network, and computational cost, close-form
equations to describe these relationships cannot be derived.
This motivates us to use an NN-enhanced method to approx-
imate the optimal solution.

V. DESIGN

In this section, we present the detailed method and proce-
dure for optimizing the utility maximization problem shown in
Eq. 5. We first present the overall architecture and workflow of
our system, and then state the detailed functions as well as the
training processes of the different components respectively.

A. System Workflow

Fig. 3 illustrates the detailed workflow of AdaDSR. We
first extract content features from the current video segment.
The features are then fed into a random-tree-regressor to
estimate the segment network cost per each downsampling
ratio. The estimated network cost is then fed into the CNN-
based configuration selector along with the frame-level content
features from the feature extractor, to get the frame-level
temporary optimal configuration selection according to users’
defined utility. We optimize the selector by using decision
skipping to reduce the processed frames running on the
per-frame configuration selector, leveraging videos’ temporal
consistency. Finally, the majority voting scheme is applied to
generate a consistent configuration for all frames in a segment
and output the final configuration selection.

B. Per-frame Configuration Selector

Fig. 4 depicts the overall architecture of our per-frame
configuration selector. Our customized utility-based configu-
ration selector receives both the frame-level content features
as well as the segment-level network cost estimation, both
of which are obtained from the pretrained machine-learning-
based unit. To be specific, a high-level feature map is extracted
from compressed frames by a pre-trained feature extractor.
After receiving the frame’s deep features, a convolution layer
is applied to capture the general neighboring characteristics
of the extracted frame-level feature map, followed by the
maximum pooling to reduce the dimension of feature size.
Then the resulting neurons are flattened, concatenated with
the estimated network cost from the regressor (normalized for
better training performance) for each downsampling ratio, and
fed into an FC layer. A softmax layer is applied to generate
the classification output finally.

Here we introduce the frame content feature extraction and
network cost estimator, serving as the vital building block of
our configuration selector, as well as the detailed guideline of
the overall training procedure.

Frame Content Feature Extraction. The deep features
are extracted with the backbone of a lightweight pre-trained
neural network, mobileNetv3-small [38]. The extracted
features contain the high-level semantic information of the
image, e.g., the class, size, edge quality, etc. Although the
camera-side inference overhead is not included in our utility,
it also needs to be considered since the camera-side resources
are limited, which may prohibit the deployment of large
models or cannot support frequent inference operations. In
our implementation, we select mobileNetv3-small, a model
with a much smaller parameter size and faster processing
time, rather than other backbone models for object detection,
such as Faster R-CNN [39], as our high-level frame feature
extractor. We remove the last max pooling layer as well as
the following FC layers to fit into our own task.

Network Cost Estimator. To estimate the data size of one
segment with different downsampling ratios, we design a novel
network cost estimation regressor based on random forest. It
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estimates the network cost for each compression rate under
the current codec per segment. The ideal regressor should both
1). be easy to compute to reduce the camera-side processing
time, and 2). capture the intra- and inter-frame complexity
well, which could provide the information for estimating the
segment size. Random forest is selected as the machine-
learning-based model for the task, due to its simple network
structure [40], as well as its high generalization ability without
the effect of over-fitting [41].

Specifically, we choose three frames sj,0, sj,1, and sj,2,
representing the first, middle, and last frames of the jth

segment, which is assumed to reflect the segment properties
well since the segment duration we choose is quite short (∼ 2
seconds). For each downsampling rate d and each raw video
segment j, the regressor outputs the network cost estimation
ñwj,d:

Ñj,d = Fi(size(sj,1), std(sj,1), diff(sj,0, sj,1, sj,2)) (9)

where size(·), std(·) represents the size and spatial standard
deviation of an image, capturing the intra-frame complexity;
while diff(·, ·, ·) represents the average pixel-level difference
across the frames, capturing the inter-frame complexity. All
three operations require computation on low-level handcrafted
numerical features only. F(·) is the pre-trained random forest
regressor.

We now introduce the overall training process of AdaDSR,
which is done after obtaining the pre-trained network cost
estimator. We first dig into the accuracy metric specifically,
which serves as an important component in the user’s utility.
We have found that the accuracy is quite unstable for different
frames. Some frames could achieve satisfactory detection
accuracy with almost any configuration, while some others’
detection accuracy is low even when applying the optimal
configuration. This is because the detection difficulty fluctuates
a lot. For example, some frames only consist of objects of
classical sizes or shapes, and/or the background does not affect
the foreground detection; while some others may consist of
many objects with weird shapes, and/or the objects are not
salient enough due to the background color. Therefore, the
training process will be unstable when one uses an online
bandit [42] using the cumulative value of pure inference

accuracy for rewards, which cannot reflect the goodness of the
current configuration selection well with regard to the accuracy
concern. In other words, the absolute inference accuracy can
be shaped by specific content, making it difficult to tell
whether lower absolute accuracy values are caused by poor
configuration choices or complex content.

Therefore, we normalize the accuracy into the interval [0,1].
”0” would be endowed if the configuration has the lowest
accuracy for the current frame, while ”1” would be given for
the configuration inducing the highest accuracy. To make it
uniform, the network cost and server-side computational cost
are also normalized in practical implementation.

For the overall training process, we develop one-hot labels
to mark the configuration with the maximum utility. For a
given frame, its ground-truth label is a one-hot vector of a
length C, where C is the number of candidate (after filtering)
configurations, which is not greater than |D| · |U|. The weight
of the configuration selector is optimized by minimizing the
multi-class cross-entropy loss.

L = − 1

|mbatch|
∑

i∈mbatch

∑
c∈C

yi,c log ŷi,c (10)

where mbatch denotes the samples in a training batch. yi,c is
the ground-truth label, while ˆyi,c is our prediction value, for
the cth configuration of the ith frame.

C. Online Deployment

When deployed online, algorithm 1 is executed to generate
the final configurations for all frames in a segment. First, we
apply a selection skipping scheme (Lines 4-17) to optimize
the per-frame configuration selector. To be specific, by
leveraging the temporal consistency of videos, we did not
need to run our selector for all frames. This could greatly
save the camera-side computational cost, even though it is
not included in our utility. Then, majority voting (Lines
18-22) is employed to get the final configuration selection.
The frame-level configuration selector introduced in Sec.
V-B provides the optimal configuration generated by our
NN-based selector for each frame. However, constrained
by the requirement given in (7), all the frames in the same
segment should have the same downsampling ratio. In other
words, some frames need to make some compromise into a
sub-optimal configuration to generate feasible configurations.
We now introduce the two components below in detail.

Selection Skipping scheme. Thanks to the content similarity
of consecutive frames, there is no need to run the configuration
selector on each frame in production. Frames without
significant content variations compared to the reference frame
will skip the configuration classification procedure and reuse
the cached configuration cache config to save the camera’s
computational overhead (Lines 5 to 7). The skipping decision
is controlled by a pre-defined threshold ϵ, indicating the
average square of pixel difference. Frame j will be fed to the
configuration selector only when the pixel-level difference
between frame j and the reference frame is above ϵ (Lines 9
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Algorithm 1 Online Configuration Selection
1: Input: A video segment i; frame difference threshold ϵ;
2: Output: xd,u

i,j .
3: Initialization: xd,u

i,j ← 0; ref frame ← the first frame;
config list, softmax list ←[],[].

4: for each frame j in segment i do
5: if diff(j, ref frame)≤ ϵ and j is not the first frame

then
6: config list.append(cache config)
7: softmax list.append(cache softmax)
8: else
9: config ← argmax per frame selector(frame j)

10: cache config ← config
11: config list.append(config)
12: curr softmax ← per frame selector(frame j)
13: cache softmax ← curr softmax
14: softmax list.append(cache softmax)
15: ref frame ← j
16: end if
17: end for
18: Find the downsampling ratio d with the highest frequency

in config list.
19: for each frame j in segment i do
20: prune softmax ← entries of softmax list[j] with

downsampling ratio d
21: u ← argmax prune softmax
22: xd,u

i,j ← 1
23: end for

to 16). Intuitively, ϵ serves as a trade-off between preserving
a high utility and saving camera-side computational overhead.
Sec. VI-E further shows that our method is highly robust to
a wide range of ϵ.

Majority Voting. We employ majority voting to determine
the downsampling ratio for a segment. To be specific, we
keep track of the predicted optimal configurations for all
frames with config list and select the downsampling ratio
d with the highest frequency in config list as the segment’s
downsampling ratio (Line 18). Each frame’s upscaling ratio is
chosen (Lines 19 to 22) to be the one leading to the largest
softmax output which has the downsampling ratio d, recorded
by the softmax output list softmax list.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of AdaDSR on
real-world video clips.

A. Methodology and Setup

Dataset and Experimental Setup. We evaluate our pro-
posed method on the same video clips, and apply the same
hardware setup as in Sec. III. All video segments are encoded
with H.264. Similarly, we conduct multi-object detection on
cars, traffic lights, and pedestrians, which are the three most
common objects for traffic surveillance videos. We choose
mAP@0.75 as our metric for accuracy. Network cost is

0 10 20 30
error percentage (%)
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0.8

CD
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d3 (fixed)
d4 (ours)
d4 (fixed)

Fig. 5. CDF of error percentage of segment network cost estimation for
different methods. d2, d3, and d4 represent downsampling ratio of 2×, 3×,
and 4×, respectively.

measured in transmitted data size, while computational cost
is computed to be proportional to the SR inference time of
the selected configuration, represented by the simplification
model illustrated in Sec. V-B. We split each video clip into
6 segments, each of which contains 600 video frames, with
80% for training, and 20% for testing.

The candidate of configuration space is chosen as: frame
downsampling ratio in {2×, 3×, 4×}; SR upscaling ratio in
{1× (i.e. no SR), 2×, 3×, 4×}. We choose three different
combinations2 of ω1, ω2, ω3, namely (0.7, 0.2, 0.1), (0.5, 0.3,
0.2), and (0.5, 0.2, 0.3), to indicate users’ preference on
higher inference accuracy, less network cost, and less server
computational cost, respectively.

Parameter Setting. The number of random trees in the
network cost estimator is set to 10. For the configuration
selector, we set the kernel size of convolution to be 3 × 3, and
the neurons in the FC layer to be 100. The selector is trained
offline with a learning rate of 10−4. When deployed online,
the skipping threshold ϵ is set to be 10 in Sec. VI-C.

Benchmark. We compare AdaDSR with the following
benchmarks.

1) Random: Configurations are chosen at random.
2) Fixed: This is an offline profiling [27] [10] based solution

tailored to our problem. It considers the same candidate con-
figurations as AdaDSR but always chooses the configuration
that achieves the highest mean utility on the training dataset.

3) AdaScale [43]: It uses a pre-trained R-FCN [44] back-
bone for feature extraction, and trains a CNN regressor to
determine the optimal downsampling ratio, in order to achieve
high accuracy without using any SR models.

B. Performance for the Network Cost Estimator

Before analyzing the utility performance of our whole
system, we first show the performance of our random-forest-

2Since the motivation of introducing SR is mainly to enhance inference
accuracy, ω1 is chosen to be larger than ω2 and ω3 in all scenarios to ensure
satisfactory accuracy.
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Fig. 6. Normalized values for accuracy, network cost, and computational cost under various user preferences.

based network cost estimator. Fig. 5 shows the cumulative
distribution function curves of the error percentage for the
network-cost estimation in the test set. d2, d3, and d4 represent
downsampling ratio of 2×, 3×, and 4×, respectively. Solid
lines refer to our method for prediction, while dashed lines
refer to the benchmark which uses the average segment size for
each downsampling ratio for prediction. We use absolute error
percentage to reflect the performance of the estimators, which
is calculated as |est− true|/true, where est and true are the
estimated and true values of the segment size, respectively.

We find that our estimation is very close to the true data
size for each downsampling ratio, with an average percentage
of error of only about 2%, which is greatly smaller than the
benchmark. Furthermore, the maximum percentage of error of
our method is about 15% only, which is nearly half our the
benchmark, showing the tail error is also controllable.

C. Performance Comparison on Utility
Fig. 6 shows the overall normalized accuracy, network,

and computational cost of three settings for all videos in the
dataset. All measured values are normalized to [0, 1] for fair
comparison. High accuracy and low network/computational
cost normalized value are expected. The three subfigures
correspond to the accuracy-biased, network-cost-biased, and
computational-cost-biased settings, respectively. From the sub-
figures, we find that AdaDSR can satisfy users’ preferences
without substantially compromising the other two metrics.
Specifically, AdaDSR significantly outperforms the preference-
agnostic random scheme in all scenarios. Compared with the
accuracy-centric AdaScale scheme, AdaDSR achieves higher
or comparable accuracy (with up to 5% normalized accuracy
boost) at substantially lower network costs (with at least 48%
saving of network cost). It means that AdaDSR balances a
satisfactory trade-off between accuracy and network cost. Al-
though the fixed scheme can also adapt to users’ preferences to
some extent, it cannot strike the desired trade-offs precisely for
unseen video frames with new content features. The selected
configuration would either lead to a low level of accuracy (e.g.
the accuracy is comparable for the network-cost-biased case)
or induce a much higher computational cost (e.g. suffer from

the highest computational cost for the accuracy-biased case),
according to the performance of the three settings.

Table III further demonstrates the reached utility values of
all schemes for each video clip. As one can see, AdaDSR
achieves the highest utility under all cases, with an average of
about 18.4%, 7.2%, and 8.8% gain over Random, Fixed, and
AdaScale, respectively. It shows that AdaDSR has a robust
performance under a variety of video scenes and illumination
conditions.

D. Sensitivity analysis of the frame difference threshold ϵ

In Sec. VI-C, we set the frame difference threshold ϵ to
be 10 by default. However, different ϵ might affect the utility,
since many frames would follow the configuration of the ref-
erence frame, which might lead to sub-optimal performance.

We thus conduct a sensitivity analysis of frame difference
threshold ϵ to show the effect of camera-side decision skipping
on utility. We provide our findings for the accuracy-biased
setting in Fig. 7, and we believe that the findings could be
generalized to the other settings. Fig. 7 (a) plots the effect
of ϵ on our utility, and the three dashed baselines correspond
with the benchmark performing the best. Fig. 7 (b) shows the
effect of ϵ on the frame-skipping ratio, which could reflect the
characteristic of temporal consistency for the videos purposed
for surveillance. We find that when ϵ is small, frames are
skipped at a high rate, with only a minor utility drop. For
example, when ϵ=10, an average of 70% of frames could be
skipped, while the normalized utility only drops by 1% at
most. Therefore, AdaDSR is highly robust to a wide-range
small ϵ, benefiting from a large proportion of frame skipping
gain at the same time. This is because frames with little
difference may favor a similar configuration, and thus there
is no need to run our frame-level configuration selector for all
the frames.

E. Camera-side Inference Overhead

We keep track of the frame content feature extraction time
as well as the configuration selection model inference time at
the camera side to reveal the inference overhead. The total
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TABLE III
NORMALIZED UTILITY COMPARISON (FIRST THREE ROWS’ ENTRY CORRESPONDS TO RANDOM / FIXED / ADASCALE / ADADSR (ϵ=10), AND THE LAST

ROW REFERS TO THE COMPARISON WITH RANDOM / FIXED / ADASCALE).

# clip Accuracy-biased Network-cost-biased Computational-cost-biased
1 0.539 / 0.625 / 0.656 / 0.716 0.568 / 0.676 / 0.644 / 0.759 0.550 / 0.665 / 0.685 / 0.720
2 0.499 / 0.652 / 0.604 / 0.742 0.544 / 0.708 / 0.561 / 0.748 0.517 / 0.655 / 0.633 / 0.705
3 0.554 / 0.626 / 0.634 / 0.703 0.578 / 0.655 / 0.686 / 0.745 0.544 / 0.634 / 0.658 / 0.712

Avg. Gain (%) 19.0 / 8.6 / 8.9 18.7 / 7.1 / 12.0 17.5 / 18.3 / 5.4
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Fig. 7. Sensitivity analysis of the frame difference threshold ϵ.

computation time at the camera side only accounts for less
than 10% inference time of the SR inference time. Fig. 7 (b)
has revealed that a majority of frames would be skipped when
ϵ is under a predefined value. We find that when combined
with the frame decision-skipping scheme, the average camera-
side computational time per frame can be reduced to 13.8
ms, accounting for only 1.8% of the server-side SR time.
By comparison, if we use yolov7 to do direct inference, the
inference time boosts up to 207 ms on average, and Adascale
consumes up to 232 ms inference time. Therefore, AdaDSR
consumes little camera-side inference overhead compared with
direct inference or state-of-the-art methods.

VII. CONCLUSION

Neural-based super-resolution opens up new opportunities
for resource-efficient video analytics applications. In this pa-
per, we first conducted thorough data measurements to show
that, first, SR-enhanced video frames with the highest accuracy
require that the downsampling ratio and the upscaling ratio not
necessarily be the same; Second, simple vision features are
insufficient to determine the best ratio combinations. We then
formulate the SR-enhanced video analytics problem as a utility
maximization problem that jointly considers the practical ana-
lytic performance, network cost, and communication cost. We
design a neural network-based configuration selector to learn
the complex relationship between content and the optimal
configuration and determine the desirable configurations. The
temporal consistency of videos is further utilized to perform
decision-skipping so that the resource consumption on the
camera side can be greatly reduced. Experiments on real-world

video datasets demonstrate that our approach can improve the
average utility by 7.2% -18.4% in diverse video scenes over
state-of-the-art baselines.
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[13] M. Nguyen, E. Çetinkaya, H. Hellwagner, and C. Timmerer, “Super-
resolution based bitrate adaptation for HTTP adaptive streaming for
mobile devices,” in Proc. ACM Mile-High Video Conf., 2022, pp. 70–76.



11

[14] J. Filho, M. Coelho, and C. A. V. Melo, “Super-resolution on edge
computing for improved adaptive HTTP live streaming delivery,” in
Proc. IEEE CloudNet, 2021, pp. 104–110.

[15] X. Liu, Z. Ke, X. Zhou, T. Qiu, and K. Li, “Qoe-oriented adaptive
video streaming with edge-client collaborative super-resolution,” in
IEEE GLOBECOM, 2022, pp. 6158–6163.

[16] A. Zhang, C. Wang, B. Han, and F. Qian, “Efficient volumetric video
streaming through super resolution,” in Proc. ACM HotMobile, 2021,
pp. 106–111.

[17] A. Zhang, Q. Li, Y. Chen, X. Ma, L. Zou, Y. Jiang, Z. Xu, and
G. Muntean, “Video super-resolution and caching - an edge-assisted
adaptive video streaming solution,” IEEE Trans. Broadcast., vol. 67,
no. 4, pp. 799–812, 2021.

[18] J. Zhang, J. Lei, W. Xie, Z. Fang, Y. Li, and Q. Du, “Superyolo:
Super resolution assisted object detection in multimodal remote sensing
imagery,” IEEE Trans. Geosci. Remote. Sens., vol. 61, pp. 1–15, 2023.

[19] B. Hou, X. Chen, S. Zhou, H. Jiang, and H. Wang, “SR-YOLO: small
objects detection based on super resolution,” in ICIS, vol. 659, 2022,
pp. 352–362.

[20] D. Zheng, Y. Fu, H. Zhang, M. Gao, and J. Yu, “Semantic segmentation
method based on super-resolution,” Int. J. Perform. Eng., vol. 16, no. 5,
pp. 711–719, 2020.

[21] Y. Cai, Y. Yang, Y. Shang, Z. Shen, and J. Yin, “Dasrsnet: Multitask
domain adaptation for super-resolution-aided semantic segmentation of
remote sensing images,” IEEE Trans. Geosci. Remote. Sens., vol. 61,
pp. 1–18, 2023.

[22] M. Shan, S. Zhang, M. Xiao, and Y. Zhao, “LENS: bandwidth-efficient
video analytics with adaptive super resolution,” Comput. Networks, vol.
218, p. 109392, 2022.

[23] I. G. Aguilar, R. Baena, and E. López-Rubio, “Improved detection
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