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OUTLINE

O An Introduction to Video Analytics



BCKGROUND Video Analytics

Ever-growing camera deployment
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Advances in computer vision algorithms
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EXISTING EFFORTS

O From Retrospective to Live

Low-latency and costs queries on large datasets, e.g., Focus (OSDI'18).

Scalable real-time queries on live video streams, e.g., Chameleon (SIGCOMM’18).

O From Cloud to Cloud-Edge

Model compression and approximation, e.g., VideoEdge (SEC’18).
DNN model splitting, e.g., Split-brain (HotEdgeVideo’19).

Frame compression, e.g., CloudSeg (HotCloud’19).

Frame filtering, e.g., Reducto (SIGCOMM’20).

Coarse-grained and manual resource management can hardly adapt to fine-grained dynamics.

Monolithic deployment architectures hamper flexibility and scalability.



OUTLINE

0 Measurement and Motivation



MEASUREMENT

O Video Analytics Statistics on Real-World Cameras

——— =] A considerable part of frames carry

useless information.
Crossroad: vehicles - - |
Restaurant: faces ——

Developing content-aware resource schedulers.
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[1] Crossroad camera URL: https://www.youtube.com/watch?v=1EiC9bvVGnk
[2] Restaurant camera URL: https://www.youtube.com/watch?v=sbZNL98Z0GE



MEASUREMENT

O Video Analytics Statistics on Real-World Cameras

0.24 [ | | | | ]

16 | W Crossroad: veh|cles 1 1 " | Crossroad: unique vehicles
o “‘«“‘m WW I S 012 | | “WM
S 8 i i W”W 2 v "™ i Mw |
0 MMMW"M ’ | ﬁw MJJMW W W ’M)H i 0 Mw»uw,ww ‘W% | WW wwﬂww M{ ”M A\WMM
14 Restaurant faces | Q\} N 0-50 | | Restaurant unlque faces
e 7| L G025 | | |
S 1 M i 2 * UW
= o b Pk ’i f ¥ F e s d Y <, Mh., " \” i NW M U M«r b, MMMM MM AW
2400 0800 1600 2400 0800 1600  24:00 2400 0800 1600 2400 0800 1600  24:00
Time Time
Average Objects Per Frame (AOPF) Average Unique Objects Per Frame (AUOPF)

Fine-grained dynamics can hardly be captured by one-time offline or coarse-grained online profiling.

Time-series dependency information may be useful.



MEASUREMENT

O Video Analytics Statistics on Real-World Cameras

35 Counter Tracker = Detector m 140 Classifier Tracker m  Detector m
o 0 o
X X
= = 80
o 0.8 'aua
n %)
© S 20
S 04 8 20
3 3
= 0 = 0 i a1 LS m il I _..____m
24:00  8:00 16:00  24:00 8:00 16:00  24:00 24:00  8:00 16:00  24:00 8:00 16:00  24:00
Time Time
(a) Crossroad: vehicle pipeline (b) Restaurant: face pipeline

Cloud-edge collaborative schemes have great potential in reducing network resource consumption.

Video content dynamics should be taken into consideration.



MOTIVATION

O Opportunities Brought by Serverless Computing
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AWS Lambda Google Cloud Functions Apache OpenWhisk

Function as a Service (FaaS) offerings
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Fine-grained resource unit @) Addressing fine-grained video content dynamics
Workload-driven resource autoscaling ms) Avoiding unnecessary resource provisioning

Microservice architecture ) Improving flexibility and scalability



OUTLINE

O CEVAS: System Design and Implementation



System Overview

O Cloud-Edge collaborative Video Analytics with Serverless pipelines (CEVAS)

Cloud execution Cloud Obisct _
R g storage E — Database
] OO EOEOEODIEOIED
Serverless functions Edge execution
[ e ]
Cloud execution Intermediate pl -
results execution results C— <>E<,:

J> <Py <> @ Camera #1
Partition strategy /
@ — @ Camera #2
Edge execution
results w \ @ Camera #3

Controller Edge Node




System Design

O Workload-Aware Runtime Scheduling
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Implementation

O Cloud-side implementation

Video query pipelines: implemented in Python and deployed with AWS Lambda

Intermediate data: Amazon S3 for objects and Amazon DynamoDB for values

[0 Edge Node
Hardware: NVIDIA GeForce GTX 1080 GPU, 12-core Intel Core i7-6850K CPU, 32 GB of RAM
Video query pipelines: deployed with AWS loT Greengrass Core

0 Controller
Hardware: Off-the-shelf host
Software: AWS loT Device SDK
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[0 Evaluation



EVALUATI ON Experimental Setup

O Video streams and queries

Two clips from the Crossroad camera (vehicle pipeline)

Three clips from the Restaurant camera (face pipeline)

O Model choice of the Predictor component
Multilayer Perceptron (MLP) models, pre-trained on corresponding camera streams.
O Evaluation metrics

Throughput, Cloud expenditure, Transferred data
[0 Baselines

PureEdge, PureCloud
SVESC ( a Slim version of VideoEdge with Serverless Computing supports )



EVALUATION

O Performance under persistent querying

Throughput (%)

Transferred data (GB)
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Compared with PureEdge, CEVAS improves the
throughput by up to 20.6%.

CEVAS reduces about 74.4% data transfer overhead

and 86.9% cloud expenditure of PureCloud.

CEVAS reduces SVESC'’s data transfer overhead by
31.4% and cloud expenditure by 30.9%.



EVALUATION

O System Overhead
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analyzing one-minute length video.
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EVALUATION

O Performance under random querying
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(a) Query arrivals and departures (b) Performance of CEVAS

The colorized time windows in each row of (a) indicates the existence of queries on a specific video stream.
(b) assumes it costs $0.1 to transfer 1GB data between the edge and cloud and sums up the money paid for

data transfer and cloud expenditure to obtain the cost values.
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