
Video Processing with Serverless Computing:
A Measurement Study

Miao Zhang
Computing Science School
Simon Fraser University

mza94@sfu.ca

Yifei Zhu
Computing Science School
Simon Fraser University

yza323@sfu.ca

Cong Zhang
University of Science and
Technology of China
congz@ustc.edu.cn

Jiangchuan Liu
Computing Science School
Simon Fraser University

jcliu@cs.sfu.ca

ABSTRACT
The growing demand for video processing and the advantages in
scalability and cost reduction brought by the emerging serverless
computing have attracted significant attention in serverless com-
puting powered video processing. However, how to implement and
configure serverless functions to optimize the performance and
cost of video processing applications remains unclear. In this pa-
per, we explore the configuration and implementation schemes of
typical video processing functions deployed to the serverless plat-
forms and quantify their influence on the execution duration and
monetary cost from a developer’s perspective. Our measurement
reveals that memory configuration is non-trivial. Dynamic profiling
of workloads is necessary to find the best memory configuration.
Moreover, compared with calling external video processing APIs,
implementing these services locally in serverless functions can be
competitive. We also find that the performance of video processing
applications could be affected by the underlying infrastructure. Our
work provides guidelines for further function-level optimization and
complements the existing measurement studies for both serverless
computing and video processing.

CCS CONCEPTS
• Networks → Network measurement; • Computer systems
organization→Cloud computing; • Information systems→
Multimedia information systems.

KEYWORDS
Video Processing, Serverless Computing, Serverless Functions
ACM Reference Format:
Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu. 2019. Video Pro-
cessing with Serverless Computing: A Measurement Study. In 29th ACM
SIGMM Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV ’19), June 21, 2019, Amherst, MA, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3304112.3325608

1 INTRODUCTION
The proliferation of video streaming services [3] and the recent
advances in computer vision algorithms boost the demand for video

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOSSDAV ’19, June 21, 2019, Amherst, MA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6298-6/19/06. . . $15.00
https://doi.org/10.1145/3304112.3325608

processing [14]. Videos either need to be transformed into different
formats to guarantee smooth playback on different devices and
in different network conditions (i.e., processing for delivery) or
need to be analyzed automatically so that the information in it can
be extracted to help further decision making (i.e., processing for
understanding). Unfortunately, video processing for both delivery
and understanding is inherently resource-intensive, which means
it is always costly and time-consuming [4]. For example, the video
object detector [16], which powers the winning entry of ImageNet
VID challenges 2017 [11], processes only 1.2 frames per second
on an Nvidia Tesla K40 GPU. To accelerate the video processing
speed and reduce costs, previous studies have focused on migrating
video processing tasks to the resource-rich cloud [5, 10, 12]. Yet
constrained by the operation and pricing model of the prevalent
infrastructure as a service (IaaS) cloud, users inevitably need to
reserve and manage cloud resources by themselves and pay for the
idle server time. Further, these heavy-weight cloud server instances
cannot scale up or down flexibly to meet the changing workloads,
especially for those that require near real-time processing.

As a new execution model, serverless computing is emerging to
overcome the weaknesses of traditional cloud computing models
[7]. It offloads the task of server provisioning and management
from developers to platforms. In the serverless platform, developers
only need to break up application codes into a collection of stateless
functions and set events to trigger their executions. Platforms are
responsible for handling every trigger and scaling precisely with
the size of workloads. The light-weight virtualization techniques
used in serverless computing, represented by containerization [1],
further enable function instances to spin up or down inmilliseconds.
As the rapid evolution of serverless computing, it has been imple-
mented in commercial offerings and open source projects, such
as AWS Lambda 1, Google Cloud Functions (GCF) 2, and Apache
OpenWhisk 3. In addition, commercial serverless offerings charge
users at a fine-grained timescale (100ms) and almost achieve the
long-promised “pay-as-you-go” pricing strategy.

Given the significant advantages in scalability, startup delay,
and pricing, industry experts and researchers from academia have
shown great interests in applying serverless computing in video pro-
cessing. For example, existing studies [2, 4] have shown the ability
of serverless computing in executing massively parallel functions
to speed up video processing. Industry practices also prove that
serverless computing is an attractive choice of building scalable
and cost-effective video processing applications 4,5. However, these

1https://aws.amazon.com/lambda/
2https://cloud.google.com/functions/
3https://openwhisk.apache.org
4https://aws.amazon.com/solutions/case-studies/vidroll/
5https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/

61

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA M. Zhang et al.

Table 1: Pricing Schemes of Serverless Computing Platforms (beyond free tiers)α

Symbol AWS Lambda GCF

Price per invocation I $0.0000002 $0.0000004
Memory (CPU) M (P) {128(p), ..., 3008(23.5p)} {128(200), 256(400), 512(800),1024(1400), 2048(2400)}
Price per 100ms C 10−10 ∗ 16.28M 10−10 ∗ (2.44M + 10P)
α : The unit of memory size is MB, the unit of CPU is MHz and the unit of price is US dollar; p is unknown to users.

attempts are still in their infancy. How to implement and configure
serverless functions to optimize the performance and cost of video
processing applications remains unclear.

In this paper, we conduct extensive measurements on two lead-
ing serverless computing platforms (AWS Lambda and GCF) to
study the impact of user-controllable knobs on the performances
of video processing applications from a developer’s perspective.
Specifically, we quantify the impact of function resource allocation
(e.g., memory size), function implementation schemes (local imple-
mentation or external APIs), and platform selection (AWS Lambda
or GCF) on typical video processing applications (e.g., transcoding,
face detection). As an argument for platform selection, we also
identify the effect of underlying infrastructures on applications’
performance. Our primary measurement insights include:
1. Memory configuration for video processing functions deployed

on serverless computing platforms is non-trivial, which is highly
related to the workload types. The largest memory size does
not always lead to the most beneficial result. Dynamic profiling
of the workloads’ demand for resources is necessary to find the
best memory configuration.

2. To perform complex video processing tasks in serverless func-
tions, calling external APIs is much more expensive than us-
ing local implementations. For example, running a pre-trained
model to perform face detection locally can achieve comparable
accuracy and latency to external APIs at a much lower cost.

3. The performance of video processing functions is platform de-
pendent. In particular, AWS Lambda has more advantages than
GCF in terms of execution duration and monetary cost under
the same configuration and implementation scheme. However,
the performance of AWS Lambda is affected by the underlying
infrastructure and is not as stable as that of GCF.

2 BACKGROUND
Modern applications deployed in the cloud tend to be increasingly
complicated and resource-intensive, which makes application mon-
itoring and workload forecasting progressively challenging. Conse-
quently, providing a cloud computing execution model that is not
merely elastic but autoscaling accurately based on the workload is
necessary [6]. Serverless computing emerges as such an execution
model where providers are responsible for the high availability and
scalability of each function to meet different workload needs. It
is capable of launching thousands of parallel stateless functions
hosted in light-weight containers rather than heavy-weight virtual
machines (VMs) within a short period. In the serverless computing
platform, an invocation for a newly deployed function is served by
a newly created container (cold-start). Most providers also choose

to reuse already activated containers to serve recurring invocations
(warm-start) to reduce the overhead incurred by initializing a new
container. Another significant advantage of the serverless platform
is the “pay-as-you-go” pricing strategy. Providers usually charge
for the resources consumption and execution duration of functions.
In this paper, we focus on AWS Lambda and GCF because they are
leading companies in this field. A summary of the pricing schemes
of these two platforms is shown in Table 1. For AWS Lambda, the
price per 100ms is proportional to the memory size, and the CPU
quota is also allocated linearly in proportion to it. Although the
memory size increment in the pricing list of AWS Lambda is 64MB,
we find that the memory size can be actually set to any integer
between 128MB to 3008MB via AWS CLI. For GCF, the price per
100ms is related to the memory size and CPU quota. The total price
of both platforms for one function configured withm MB memory
executing t seconds can be calculated byC(m)∗ceil(t/10)+I , where
C(m) is the corresponding price per 100ms for memory sizem MB,
I is the price per invocation.

Given the advantages of serverless computing, efforts have been
made to use it for video processing. Based on AWS Lambda, ExCam-
era [4] achieves a massively parallel, cloud-based video processing
framework that can be used as the backend for interactive video pro-
cessing applications. Sprocket [2] orchestrates serverless functions
in video processing pipelines and exploits intra-video parallelism
to achieve low latency. Both studies aim at employing massively
parallel function instances for video processing acceleration. Recent
measurement works [9, 13] on serverless computing platforms sys-
tematically explore the underlying resource allocation mechanisms
at the platform side. In our measurement study, we focus on exam-
ining the impact of the user-controllable factors, including function
resource configurations and function implementation schemes, on
latency and cost reduction of standalone video processing functions
from the developers’ perspective.

3 METHODOLOGY
We invoke serverless functions directly via the provider’s command
line interface (AWS CLI or gcloud CLI) and pass in event data
when necessary. Since our purpose is to study the implementation
and configuration of standalone functions, rather than test the
scalability of the serverless platform, we invoke functions serially
instead of concurrently.

Measurement functions. We implement a measurement func-
tion template for video processing tasks and show its logic in Fig-
ure 1. Since serverless functions are designed to be stateless, shared
remote storage is usually used to share data between different func-
tions [8]. We adopt the cloud object storage such as Amazon S3 or

62

Video Processing with Serverless Computing NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

 Serverless Computing Platform
 (e.g., AWS Lambda, Google Cloud Functions)

Function instance execution timeline

Download Time
Video Processing Time (e.g.,
transcoding, face detection,

watermark)
Upload Time

 Cloud Object Storage
 (e.g., AWS S3, Google Cloud Storage)

Figure 1: The measurement function template.

Google Cloud Storage (GCS) as the shared remote storage due to its
widespread usage and reasonable I/O performance [7]. There are
three subtasks in the template: downloading a video chunk from the
cloud storage, performing the video processing task (e.g., transcod-
ing or face detection) on the downloaded chunk, and uploading the
processed video chunk back to the cloud storage. All measurement
functions are implemented based on this template and only differ
in the video processing section. In addition to executing subtasks,
measurement functions are also responsible for subtask execution
timing and collection of runtime information.

Runtime.We choose Python as our measurement function run-
time since it is the most commonly used language runtime in AWS
Lambda according to New Relic 6. As GCF currently only supports
Python3.7 runtime, unless otherwise noted, we configure Python3.7
as the function runtime to make fair cross-platform comparisons.

Workloads. Video processing includes not only simple video
conversion tasks (e.g., compression, transcoding, editing) but also
more complicated analytic tasks (e.g., scene recognition, face detec-
tion). We create a set of representative video processing functions
to simulate different types of workloads. In particular, we report the
results of the transcoding and face detection functions. Nonetheless,
our observations apply to other video processing functions as well.

Transcoding functions use ffmpeg to transcode a video chunk
downloaded from the cloud storage (S3 or GCS) to another bitrate
and upload the newly generated video chunk to the cloud storage.
Face detection functions are implemented to detect the presence
of faces in a 6-second video chunk of the 720p Spider-Man trailer
7. The frame sampling rate in our measurement is 8 frames/sec.
The interaction between the cloud storage and the serverless func-
tion works in the same sequence as in the transcoding case. We
compare three face detection methods. (1) Pre-trained MTCNN
model to detect faces. MTCNN is a deep cascaded multi-task frame-
work used for face detection and alignment [15]. We deployed an
MTCNNmodel to the AWS Lambda platform with tensorflow and
opencv libraries (Lambda-MTCNN). However, we failed to deploy
it to GCF platform since the tensorflow library has not been well
supported by python3.7. (2) Amazon Rekongnition Image API 8. It
is a deep learning powered image recognition service. We called
its DetectFaces API within an AWS Lambda function to process

6https://blog.newrelic.com/product-news/aws-lambda-state-of-serverless/
7https://www.youtube.com/watch?v=OjgO_-Zk7bQ
8https://aws.amazon.com/rekognition/image-features/

video frames (Lambda-AAPI). (3) Google Cloud Vision API 9. We
called its face detection API within a GCF function to perform
the face detection task (GCF-GAPI).

Evaluation metric. From the developers’ perspective, the most
important concerns are the task execution time and the money to
be paid. We thus adopt function execution duration and monetary
cost as the performance metrics. The function execution duration is
not the end-to-end time, but the time it takes for the function code
to execute. This time is usually reported by the serverless platform
and is rounded up to the nearest 100 ms as the billed time.

Underlying system information peeping. The measurement
functions collect information about underlying infrastructureswhile
performing video processing tasks. We adopt the method proposed
by [13]: the measurement functions obtain VM identifications by
checking the proc filesystem and distinguish between cold-start
and warm-start instances by checking the existence of InstanceID.

4 MEASUREMENT RESULT
From the developers’ perspective, there are mainly two ways to con-
trol function’s performance: resources configuration and function
implementation schemes. In this section, we examine the effects of
these two controlling knobs on the functions’ execution duration
and monetary cost. Most of our measurements were completed
between November 2018 and February 2019. Unless otherwise spec-
ified, we use the average of 10 warm-start invocations as the result
of one measurement to mitigate randomness.

4.1 Function Configuration
Figure 2 shows the results of the transcoding and face detection
(Lambda-MTCNN) functions with different memory configurations
deployed on AWS Lambda. We start to plot the figures from 320MB
(448MB) because it is the minimum memory size needed for the
transcoding (face detection) function to run successfully. As one can
see from Figure 2a and Figure 2c, the function execution duration
does not decrease proportionally with the increase of memory size.
The relationship between execution duration and memory size can
be fitted by a power-law distribution: y = 15665000x−0.9119 for
transcoding; y = 14950000x−0.7171 for face detection. This indicates
that there will not be a significant decrease in execution duration
after increasing the memory size to a certain extent. Figure 2b and
Figure 2d show the execution latencies of the three subtasks. The
download and upload latencies are much smaller than the video
processing latency, which follows the same pattern as the total
execution duration. The download and upload latencies experience
a slight decrease with smaller memory sizes and then fluctuate at a
relatively stable value. This is because, for small memory sizes, the
I/O performance is affected by the function memory (CPU) [13].

GCF uses a pricing strategy similar to AWS Lambda, charging for
CPU and memory usage, but only provides five alternative memory
and CPU configurations. We plot the execution duration and cost
of transcoding functions deployed with these configurations and
compare themwith their AWS Lambda counterparts in Figure 3. For
a fair cross-platform comparison, the results shown in the figure
are the averages of 24 measurements over the day, and the error
bars are used to represent the standard deviation. We start to plot

9https://cloud.google.com/vision/

63

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA M. Zhang et al.

2

4

6

8

320 896 1600 2304 3008
4.0

4.4

4.8

5.2

× 10
4

× 10
-4

D
u
ra

ti
o
n
 (

m
s
)

P
ri
c
e
 (

$
)

Memory Size (MB)

Duration
Price

Fitted Duration

(a) Transcoding cost.

10
2

10
3

10
4

10
5

320 896 1600 2304 3008

L
a
te

n
c
y
 (

m
s
)

Memory Size (MB)

Download
Transcoding

Upload

(b) Subtasks of transcoding.

4

8

12

16

20

448 1088 1728 2368 3008
1.3

1.6

1.9

2.2

× 10
4

× 10
-3

D
u
ra

ti
o
n
 (

m
s
)

P
ri
c
e
 (

$
)

Memory Size (MB)

Duration
Price

Fitted Duration

(c) Face detection cost.

10
2

10
4

10
6

448 1088 1728 2368 3008

L
a
te

n
c
y
 (

m
s
)

Memory Size (MB)

Download
Face Detection

Upload

(d) Subtasks of face detection.

Figure 2: Transcoding and face detection performance with different memory sizes.

from 512MB because 128MB and 256MB are too small to run the
function successfully. According to this figure, choosing a larger
memory size is better for GCF since the execution duration can be
improved a lot with a little extra money. Overall, AWS Lambda has
more advantages regarding execution duration and monetary cost,
but it experiences more intense performance fluctuations when the
memory size is small.

0

5

512 1024 2048

× 10
4

D
u
ra

ti
o
n
 (

m
s
)

Lambda GCF

2

4

6

8

512 1024 2048

× 10
-4

P
ri
c
e
 (

$
)

Memory Size (MB)

Lambda GCF

Figure 3: Comparison of different serverless platforms.

4.2 Function Implementation Scheme
Current serverless computing platforms have many limits on the
computing and storage resources. For example, the deployment
package size (250 MB, unzipped) and local disk size (512MB) of AWS
Lambda may prohibit it from being used for running deep learning
algorithms with large models. Furthermore, considering the con-
venience in management and development, combining serverless
functions with external API services has become a trend. Since
invoking external APIs requires extra latency and money for API
accessing, we are interested to know the execution duration and
cost comparison between running tasks locally or through external
API invoking. We explore three face detection methods: Lambda-
MTCNN, Lambda-AAPI and GCF-GAPI (see §3 for detail).

Figure 4a displays the execution duration of three face detection
functions. The execution duration of API-based methods (Lambda-
AAPI and GCF-GAPI) stays almost unchanged as the memory
size rises. This is consistent with intuition since the most time-
consuming work (face detection) is done by external APIs. However,
Lambda-MTCNN, which consumes local resources to detect faces,
shows an obvious latency decline and reaches a value very close

to that of Lambda-AAPI when the memory size rises to 2048MB.
Although unshown in the figure, when the memory size reaches
3008MB, the latency of Lambda-MTCNN (45815.4ms) is smaller
than that of Lambda-AAPI (62375ms). It is worth noting that for the
video we tested, Lambda-AAPI achieves the highest face detection
recall (99.11%), followed by Lambda-MTCNN (90.27%). GCF-GAPI
has the worst detection recall (71.93%) although it achieves the
lowest latency. We hypothesize that Google Vision API is designed
to sacrifice accuracy for efficiency. Overall, Figure 4a reveals that
serverless-based face detection function implementation is compa-
rable to API-based implementations in terms of execution duration.

Figure 4b shows the monetary cost of different methods. For
API-based methods, the total cost consists of the API invocation
cost and the serverless function execution cost. We plot these two
costs in stacked bars (API invocation costs are stacked above server-
less function execution costs). Both Amazon Rekognition API and
Google Cloud Vision API use tiered pricing schemes. Their amor-
tized API invocation costs are illustrated by the heights of the bars.
The minimum and maximum API invocation costs under the tiered
pricing schemes are illustrated by error bars. We observe that API
invocation costs contribute more than 90% of the total costs. This
indicates that calling external API services is much more expensive
than executing serverless functions. This observation can be fur-
ther supported by the cost of Lambda-MTCNN (labeled as MTCNN
in the figure), which only contains serverless function execution
cost and is significantly cheaper than API-based methods. Overall,
Figure 4b reveals that serverless-based implementation of the face
detection function is more effective than API-based implementations
in terms of monetary cost.

We plot the processing latency of each frame in the test video
chunk in Figure 4c.We observe that the processing latency is related
to the content of the frame. For example, the processing latency
of the first frame is longer than the tenth frame in all methods.
This can be explained by the fact that there are multiple human
faces in the first frame and no face in the tenth frame. We also
find that increasing the memory size configured for the Lambda-
MTCNN function narrows the gap between the processing latencies
of frames. This suggests that we can achieve a stable latency by
providing more resources for the serverless-based implementation.

5 DISCUSSION
5.1 What We Learn?
Memory configuration. The memory configuration for server-
less functions is non-trivial, especially for a serverless platform

64

Video Processing with Serverless Computing NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

 0

 0.5

 1

 1.5

 2

 2.5

512 1024 2048

× 10
5

D
u

ra
ti
o

n
 (

m
s
)

Memory Size (MB)

GCF-GAPI
Lambda-AAPI

Lambda-MTCNN

(a) Face detection execution duration.

0

2

4

6

8

512 1024 2048

× 10
-2

P
ri
c
e

 (
$

)

Memory Size (MB)

GAPI
GCF

AAPI
Lambda

MTCNN

(b) Monetary cost.

0

2

4

6

8

1 10 20 30 40 48

× 10
3

L
a

te
n

c
y
 (

m
s
)

Frame Index

GAPI
AAPI

MTCNN-512MB
MTCNN-1024MB
MTCNN-3008MB

(c) Video frame processing latency.

Figure 4: Comparison of different implementations of the face detection function.

like AWS Lambda, which has 2881 configuration options. Although
the relationship between execution duration and memory size can
be fitted by a power-law distribution for AWS Lambda functions,
different workloads have different fitting parameters (e.g., transcod-
ing and face detection). This indicates that we need to profile the
workload dynamically first and then choose an appropriate mem-
ory size based on the final optimization goal (latency or cost or
both). For example, in order to minimize the execution duration of
a given budget, users can first obtain the corresponding relation-
ship between price and memory size by profiling the workload and
then choose the maximum memory size that does not exceed the
memory size corresponding to the budget.

Implementation scheme. Integrating serverless functionswith
other cloud services (such as Amazon Rekognition) can break up
the limits on serverless functions, enabling them to handle more
complex video processing tasks. Despite this, running pre-trained
models in serverless functions to perform video analytic tasks can
obtain advantages of latency and monetary cost.

Platform Selection. So far, for all video processing tasks, AWS
Lambda functions outperformGCF functions under the same config-
uration and implementation scheme in terms of execution duration
and monetary cost. Does this mean that AWS Lambda is better than
GCF in all respects? We will answer this question in §5.2.

5.2 Insights into System Factors
During our experiments, we find that if we call the same func-
tion deployed with AWS Lambda at different times of the day, we
can observe apparent differences in execution duration. To further
confirm that this is an accidental or a common phenomenon, we
conduct measurements once an hour to see how the performance
of the transcoding function deployed with the serverless platforms
changes in one day and show the results in Figure 5.

Figure 5a shows the I/O time variation of AWS Lambda. Increas-
ing the memory size from 1024MB to 2048MB does not improve
the download and upload latencies much, which indicates that
for larger memory sizes, CPU power is not the bottleneck for I/O
tasks. We plot the variation of total duration in Figure 5b (video
processing time follows the same pattern). We observe that as the
memory size decreases, the execution duration changes more and
more dramatically. For example, the longest execution duration of
512MB (56640ms) is 1.5 times as much as the shortest execution

duration (37735ms), and the increment is even larger than the aver-
age execution duration of 2048MB (13754ms). Considering that we
sequentially invoke the function and AWS Lambda assigns dedi-
cated VMs for one tenant [13], it cannot be caused by the resources
competition with other co-located function instances. We check
the information of VMs where function instances are hosted and
find that the obvious changes in performance over time mainly
caused by the underlying heterogeneous infrastructure. There are
three types of CPUs in our experiments: CPU#1 (E5-2666 v3 @
2.90GHz), CPU#2 (E5-2676 v3 @ 2.40GHz) and CPU#3 (E5-2686
v4 @ 2.30GHz). We plot the CPU types of VMs hosting the cor-
responding function instances in Figure 5b. As can be observed,
different CPU types correspond to different performance levels. We
also find that the abnormal rise in Figure 2c is caused by under-
lying infrastructure. When the memory size is less than 1152MB,
the CPU type of VMs hosting Lambda-MTCNN function instances
is CPU#2, after that the CPU type of VMs is CPU#1. Therefore,
we hypothesize that if all Lambda-MTCNN function instances are
assigned the same type of VM, the function execution duration in
Figure 2c will continue to decrease as the memory size increases,
like that of the transcoding function (shown in Figure 2a). Overall,
it is fair to say that the influence of the heterogeneous underlying
infrastructures on performance cannot be ignored.

Compared with AWS Lambda, the performance of functions
deployed with GCF is more stable, especially for small memory
sizes. According to the CPU information we can get, we do not find
obvious performance differences between function instances hosted
on different VMs 10. We also find that GCF tends to launch new
function instances aggressively for functions with small memory
sizes rather than reuse existing ones as stated in [13].

To further investigate the stability changes in a more coarse
time granularity, we plot the changes in execution duration of the
transcoding task within one week in Figure 6. For AWS Lambda,
the performance shows more drastic changes as the memory size
decreases. Although unshown in the figure, the execution dura-
tion of 3008MB remains basically unchanged within one week. The
changes do not show a daily periodic pattern but are closely related
to the heterogeneous underlying infrastructures. This convinces

10We cannot get CPU Model names but can get the values of CPU family and
Model. We thus suppose VMs with different values of CPU family and Model must
have different CPUs.

65

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA M. Zhang et al.

40

130

220

00
:0

0

06
:0

0

12
:0

0

18
:0

0

24
:0

0D
o

w
n

lo
a

d
 (

m
s
) 512MB 1024MB 2048MB

100

300

500

00
:0

0

06
:0

0

12
:0

0

18
:0

0

24
:0

0U
p

lo
a

d
 (

m
s
)

Time

(a) AWS Lambda I/O time.

0

2

4

6

8

00
:0

0

06
:0

0

12
:0

0

18
:0

0

24
:0

0

× 10
4

D
u
ra

ti
o
n
 (

m
s
)

Time

512MB
1024MB

2048MB
CPU#1

CPU#2
CPU#3

(b) AWS Lambda duration.

160

260

360

00
:0

0

06
:0

0

12
:0

0

18
:0

0

24
:0

0D
o

w
n

lo
a

d
 (

m
s
) 512MB 1024MB 2048MB

160

260

360

00
:0

0

06
:0

0

12
:0

0

18
:0

0

24
:0

0U
p

lo
a

d
 (

m
s
)

Time

(c) GCF I/O time.

1

2

3

4

5

6

00
:0

0

06
:0

0

12
:0

0

18
:0

0

24
:0

0

× 10
4

D
u
ra

ti
o
n
 (

m
s
)

Time

512MB
1024MB
2048MB

(d) GCF duration.

Figure 5: Changes in execution time for the transcoding function in one day (30/01/2019).

us that the scheduling and allocation of VMs are random and inde-
pendent of time. In contrast, GCF exhibits a more stable execution
duration regardless of the memory size.

0

20

40

60

25
/0

1

26
/0

1

27
/0

1

28
/0

1

29
/0

1

30
/0

1

31
/0

1

01
/0

2

D
u
ra

ti
o
n
 (

s
)

AWS Lambda

512MB 1024MB 2048MB

0

20

40

60

25
/0

1

26
/0

1

27
/0

1

28
/0

1

29
/0

1

30
/0

1

31
/0

1

01
/0

2

D
u
ra

ti
o
n
 (

s
)

GCF

512MB 1024MB 2048MB

Figure 6: Transcoding function execution duration changes
within one week (25/01/2019-31/01/2019) on different server-
less platforms.

6 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we examined the influence of configuration and imple-
mentation schemes on the performance of typical video processing
serverless functions from the developers’ perspective. Our work
provided guidelines for future function-level optimization for devel-
opers and complements the existing measurement studies on both
video processing and serverless computing. Powering video pro-
cessing tasks with the emerging serverless computing architecture
is still in its infancy. There are a few exciting directions to follow:

Serverless cost-efficiency optimization. Our measurement
reveals that the memory configuration for cost-efficient serverless
functions is non-trivial. The best memory configuration is influ-
enced by the task type or even the video content. More work is
needed to design an efficient and adaptive system to find the best
configuration for serverless functions in video processing pipelines.

Serverless deep learning.Although deep learning has achieved
great success in video analytics, deploying large models to the cur-
rent serverless platforms still faces many challenges (e.g., small
storage, no support for GPU). To achieve the potential of serverless
computing, running a set of concurrent functions that each runs a
small and dedicated model in the serverless platform can be a viable
alternative for running a large model on GPU-based infrastructures.

Serverless edge computing. An undiscussed aspect of server-
less computing in this paper is the combination with edge infras-
tructures. While executing function codes closer to users facilitates
customized video processing and improves the response speed, edge
resource is usually limited compared to the cloud. The trade-off
between performance and cost in serverless edge computing will
be an important issue in future research.

ACKNOWLEDGMENTS
This work is supported by a Canada Technology Demonstration
Program (TDP) Grant and a Canada NSERC Discovery Grant. The
work of C. Zhang is supported by the Fundamental Research Funds
for the Central Universities (WK2150110015).

REFERENCES
[1] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt.

2018. SAND: Towards High-Performance Serverless Computing. In USENIX ATC.
[2] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter. 2018. Sprocket: A Serverless

Video Processing Framework. In ACM SoCC.
[3] Cisco. 2018. Cisco Visual Networking Index: Forecast and Trends, 2017-

2022. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html

[4] S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng, R. Bhalerao,
A. Sivaraman, G. Porter, and K. Winstein. 2017. Encoding, Fast and Slow: Low-
Latency Video Processing Using Thousands of Tiny Threads. In USENIX NSDI.

[5] G. Gao and Y. Wen. 2016. Morph: A fast and scalable cloud transcoding system.
In ACM MM.

[6] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A.
Tumanov, and C. Wu. 2018. Serverless Computing: One Step Forward, Two Steps
Back. arXiv preprint arXiv:1812.03651 (2018).

[7] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. 2017. Occupy the cloud:
Distributed computing for the 99%. In ACM SoCC.

[8] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and A. Trivedi. 2018.
Understanding ephemeral storage for serverless analytics. In USENIX ATC.

[9] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. 2018. Serverless
computing: An investigation of factors influencing microservice performance. In
IEEE IC2E.

[10] H. Ma, B. Seo, and R. Zimmermann. 2014. Dynamic scheduling on video transcod-
ing for MPEG DASH in the cloud environment. In ACM MMSys.

[11] R. Olga, D. Jia, S. Hao, K. Jonathan, S. Sanjeev, M. Sean, H. Zhiheng, K. Andrej, K.
Aditya, B. Michael, C. B. Alexander, and F. Li. 2015. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision 115, 3 (2015),
211–252.

[12] K. Sembiring and A. Beyer. 2013. Dynamic resource allocation for cloud-based
media processing. In ACM NOSSDAV.

[13] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. 2018. Peeking behind the
curtains of serverless platforms. In USENIX ATC.

[14] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J.
Freedman. 2017. Live Video Analytics at Scale with Approximation and Delay-
Tolerance. In USENIX NSDI.

[15] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. 2016. Joint face detection and alignment
using multitask cascaded convolutional networks. IEEE Signal Processing Letters
23, 10 (2016), 1499–1503.

[16] X. Zhu, Y.Wang, J. Dai, L. Yuan, and Y.Wei. 2017. Flow-guided feature aggregation
for video object detection. In IEEE ICCV.

66

