SFU SIMON FRASER UNIVERSITY ENGAGING THE WORLD

Video Processing with Serverless Computing: A Measurement Study

Miao Zhang, Yifei Zhu, Cong Zhang, Jiangchuan Liu

□ Why Serverless Computing?

Existing Efforts

□ A Measurement Study

Summary & Future Directions

BCKGROUND

Video Processing

Video Processing:

Video conversion tasks (e.g., compression, transcoding, editing) Video analytics tasks (e.g., scene recognition, face detection)

BCKGROUND

Current Trends

□ More cameras.

More videos. More opportunities.

Extracting information and properly responding are increasingly difficult.

☐ Higher quality (Ultra HD videos, e.g., 4K, 8K).

Better viewing experiences.

Higher burden on video conversion tasks.

□ Advances in computer vision algorithms.

Higher accuracy ^[1].

Higher cost. A object detector ^[2] processes only 1.2 frames/s on a GPU.

How to achieve low-latency and cost-effective video processing?

[1] J. Jiang et al. Chameleon: scalable adaptation of video analytics. In ACM SIGCOMM 2018.

[2] X. Zhu et al. Flow-guided feature aggregation for video object detection. In IEEE ICCV 2017.

- □ Why Serverless Computing?
- Existing Efforts
- □ A Measurement Study
- Summary & Future Directions

Why serverless computing?

Light-weight Implementation

Map each function instance into its own container ^[1].

Launch thousands of parallel function instances in milliseconds.

[2] https://www.docker.com/resources/what-container.

Why serverless computing?

Reduced Cost

Pay-as-you-go pricing strategy.

Fine-grained billing (e.g., 100ms).

Table 1: Pricing Schemes of Serverless Computing Platforms (beyond free tiers) $^{\alpha}$

	Symbol	AWS Lambda	GCF
Price per invocation	Ι	\$0.000002	\$0.0000004
Memory (CPU)	M (P)	$\{128(p),, 3008(23.5p)\}$	$\{128(200), 256(400), 512(800), 1024(1400), 2048(2400)\}$
Price per 100ms	С	$10^{-10} * 16.28M$	$10^{-10} * (2.44M + 10P)$

 $^{\alpha}$: The unit of memory size is MB, the unit of CPU is MHz and the unit of price is US dollar; p is unknown to users.

Reduced Operational Management

Automatic scaling and monitoring are provided by cloud providers.

- □ Why Serverless Computing?
- Existing Efforts
- A Measurement Study
- Summary & Future Directions

Excamera ^[1]:

□ provides a framework **mu** to run 5,000-way parallel jobs.

designs a video codec for massive fine-grained parallelism.

Academia

Sprocket ^[2]:

orchestrates video pipelines with a domain-specific language.
exploits intra-video parallelism to achieve low-latency.

[1] S. Fouladi et al. Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads. In USENIX NSDI 2017.

[2] L. Ao et al. Sprocket: A Serverless Video Processing Framework. In ACM SoCC 2018.

EXISTING EFFORTS

Industry

advertisers/publishers

login

Vidroll^[1]: 3rd party EC2 containers DynamoDP **□** real-time ads bidding. Open RTB Bidder using Cloud Watch Lambda and API Gateway Redshift **I** real-time ads transcoding. Netflix ^[2]: video ad opportunity Data engine Kinesis Lambda web portal using on FC2 Lambda and API Gateway □ self-managing infrastructure. Lambda event triggers using SNS replace inefficient processes. Elastic Beanstalk publishes SNS messages at set interval VidRoll Architecture on AWS [1] https://aws.amazon.com/solutions/case-studies/vidroll/. [2] https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/.

□ Why Serverless Computing?

Existing Efforts

□ A Measurement Study

Summary & Future Directions

□ Platform:

AWS Lambda Google Cloud Functions

□ Runtime:

Python3.7

Applications:

Transcoding (FFmpeg^[1]) Face detection (MTCNN^[2])

□ Metrics:

Function execution duration Monetary cost

Setup

Measurement function framework

[1] https://ffmpeg.org.

[2] K. Zhang et al. Joint face detection and alignment using multitask cascaded convolutional networks.

IEEE Signal Processing Letters 23, 10 (2016), 1499-1503.

Function Configuration

(a) *Transcoding* function deployed with AWS Lambda

(b) Face detection function deployed with AWS Lambda

Function Implementation Scheme

GCF-GAPI: combing Google Cloud Functions with Google Cloud Vision API ^[1]. **Lambda-AAPI:** combing AWS Lambda with Amazon Rekongnition Image API ^[2]. **Lambda-MTCNN:** a MTCNN model deployed with AWS Lambda function.

Insights into System Factors

(a) *Transcoding* function execution duration changes in one day (AWS Lambda).

(b) *Transcoding* function execution duration changes in one day (GCF).

Results

Platform Comparison

(a) Execution duration and monetary cost of *transcoding* function deployed with AWS Lambda and GCF.

(b) *Transcoding* function execution duration changes within one week (25/01/2019-31/01/2019).

□ Why Serverless Computing?

Existing Efforts

A Measurement Study

Summary & Future Directions

SUMMARY

- Serverless computing is a good fit for building low-latency and costeffective video processing applications.
- Dynamic profiling of workloads is necessary for finding the best resource configuration of video processing functions.
- Running pre-trained models in serverless functions locally has latency and cost advantages over calling external APIs.
- The performance of serverless video processing applications is platform dependent.

FUTURE DIRECTIONS

Serverless Function Configuration Optimization:

- **Cost-efficient** and **scalable** applications.
- **Large** configuration space.

Serverless Deep Learning:

- **High** video processing performance.
- **Constrained** resources (no GPU support).

Serverless Edge Computing:

- **Fast** response speed.
- Constrained edge resources.

THANK YOU

