
IEEE TRANSCATIONS ON MOBILE COMPUTING 1

ILCAS: Imitation Learning-Based Configuration-
Adaptive Streaming for Live Video Analytics with

Cross-Camera Collaboration
Duo Wu, Dayou Zhang, Studuent Member, IEEE , Miao Zhang, Studuent Member, IEEE , Ruoyu Zhang,

Fangxin Wang, Member, IEEE and Shuguang Cui, Fellow, IEEE

Abstract—The high-accuracy and resource-intensive deep neural networks (DNNs) have been widely adopted by live video analytics
(VA), where camera videos are streamed over the network to resource-rich edge/cloud servers for DNN inference. Common video
encoding configurations (e.g., resolution and frame rate) have been identified with significant impacts on striking the balance between
bandwidth consumption and inference accuracy and therefore their adaption scheme has been a focus of optimization. However,
previous profiling-based solutions suffer from high profiling cost, while existing deep reinforcement learning (DRL) based solutions may
achieve poor performance due to the usage of fixed reward function for training the agent, which fails to craft the application goals in
various scenarios. In this paper, we propose ILCAS, the first imitation learning (IL) based configuration-adaptive VA streaming system.
Unlike DRL-based solutions, ILCAS trains the agent with demonstrations collected from the expert which is designed as an offline
optimal policy that solves the configuration adaption problem through dynamic programming. To tackle the challenge of video content
dynamics, ILCAS derives motion feature maps based on motion vectors which allow ILCAS to visually “perceive” video content
changes. Moreover, ILCAS incorporates a cross-camera collaboration scheme to exploit the spatio-temporal correlations of cameras
for more proper configuration selection. Extensive experiments confirm the superiority of ILCAS compared with state-of-the-art
solutions, with 2-20.9% improvement of mean accuracy and 19.9-85.3% reduction of chunk upload lag.

Index Terms—live video analytics, configuration adaption, imitation learning, cross-camera collaboration

✦

1 INTRODUCTION

M ILLIONS of cameras today are widely deployed for
live video analytics (VA) with various missions. For

instance, traffic cameras in modern cities need to detect
vehicles and pedestrian for traffic control [1]. In disaster
areas, unmanned aerial vehicles (UAVs) need to localize the
survivors with their onboard cameras so that the survivors
can be rescued as soon as possible [2]. To guarantee high
accuracy, numerous applications now employ deep neu-
ral networks (DNNs) for various analytics tasks, such as
FasterRCNN for object detection [3] and ICNet for semantic
segmentation [4]. However, the current limited computation
capacity at front-end devices prevents the computation-
intensive DNN models from being conducted locally. One
common method to overcome this limitation is to transmit
the live videos from front-end cameras to resource-rich
back-end servers to execute DNN inference for VA tasks [5].

In this context, the network bandwidth will become a
bottleneck resource in live VA streaming due to the scarce

• Duo Wu, Dayou Zhang and Ruoyu Zhang are with the Future Network
of Intelligence Institute and the School of Science and Engineering, The
Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China.
Email: {duowu,dayouzhang,ruoyuzhang}@link.cuhk.edu.cn.

• Fangxin Wang and Shuguang Cui are with the School of Science
and Engineering and the Future Network of Intelligence Institute,
The Chinese University of Hong Kong, Shenzhen and Guangdong
Provincial Key Laboratory of Future Networks of Intelligence. Email:
{wangfangxin,shuguangcui}@cuhk.edu.cn.

• Miao Zhang is with the School of Computing Science, Simon Fraser
University, BC, Canada. Email: mza94@sfu.ca.

Manuscript received xxx; revised xxx.
(Corresponding author: Fangxin Wang)

bandwidth resources between cameras and servers [6].
Common video encoding configurations (i.e., combination
of knobs such as resolution and frame rate) have significant
impacts on bandwidth consumption and inference accuracy
in live VA streaming. For instance, an expensive configura-
tion (e.g., high resolution and frame rate) with good video
quality will ensure high accuracy but yield high bandwidth
cost, which may entail long latency and analytic lag, and
vice verse. Therefore, adjusting configurations to adapt to
the variation of network bandwidth has been identified as
a promising way to maximize the server-side DNN infer-
ence accuracy without exhausting bandwidth and causing
analytic lag [6].

However, the design of such adaption strategy remains
a significant challenge due to the highly dynamics and
unstable network conditions. To make things worse, the
optimal configurations also vary with the dynamic video
contents. Intuitively, an ideal strategy should choose a low
frame rate when the targets are moving slowly and a low
resolution when they appear large in the visual field, since
such choices will consume fewer network resources without
affecting the accuracy. Yet practically, it is far more complex
to model video content dynamics and capture the implicit
relationship between configuration performance and video
contents.

Previous works usually use profiling-based strategy to
seek the best configurations, i.e., searching the possible
combination of knobs on a small portion of a given video
clip and applying the derived best one to the rest portion [7]
[8]. For example, AWStream [6] exhaustively profiles all

IEEE TRANSCATIONS ON MOBILE COMPUTING 2

configurations on a video clip to derive the profile that
characterizes the bandwidth and accuracy trade-off of each
configuration. It then online adjusts the video configurations
based on such profile and consistently updates the profile to
maintain its freshness. The key limitations of these works
lie in two aspects. First, the profiling process requires per-
forming analytics with golden configuration (uses the best
and most expensive values for all knobs) [7] [9] on a part
of video to obtain accuracy, while such golden configuration
will consume much bandwidth and entail long latency. Sec-
ond, the profiling-based strategies actually has an implicit
assumption that the configuration selected through profiling
will keep “best” for a certain time window, which in fact
cannot adapt to the dynamics of video contents or work
well under unexpected network conditions.

Recent learning-based solutions [10] [11] use deep rein-
forcement learning (DRL) to learn an agent for selecting
configurations without the streaming of golden configura-
tion or the profiling process, which outperform traditional
profiling-based solutions. They manually define a reward
function to quantify the trade-off between VA accuracy and
upload lag and use such function to train their agent. The
trained agent is used to directly select configurations based
on the observed environment states (e.g., estimated network
bandwidth). Nevertheless, these solutions still suffer from
three key problems. First, the performance of their DRL
agent may drift far from the optimal because of the usage
of fixed reward function. Specifically, they introduce fixed
weight parameters in the reward function to characterize
the trade-off between different performance metrics, while
in practice different applications or scenarios have different
emphasis of these metrics. Moreover, they only use coarse-
grained numerical features to capture video dynamics, and
therefore lack effectiveness to adapt to the changes of
video contents. Additionally, they do not explore the spatio-
temporal correlations of closely-located cameras to achieve
more robust performance.

In this paper, to combat the limitations above, we
propose ILCAS, a novel learning-based framework for
configuration-adaptive streaming for live VA, which aims
to maximize the VA task accuracy while minimizing the up-
load lag for each chunk. The heart of ILCAS is an imitation
learning (IL) [12] method to train the agent. Unlike previous
learning-based solutions that use handcrafted rewards for
training, ILCAS trains the agent with a set of demonstra-
tions collected from the expert, which is an offline opti-
mal policy that solves the adaptive configuration selection
problem with an efficient dynamic programming algorithm.
With IL, the agent learns to solve the task by observing
and imitating the expert’s behavior from demonstrations,
instead of explicitly optimizing a reward function. This
enables ILCAS to achieve better trade-off between VA ac-
curacy and upload lag, and therefore remarkably improves
its overall performance.

Besides, to tackle the challenge of video dynamics,
ILCAS extracts motion vectors from the video encoding
process, and derives motion feature maps that provide fine-
grained information of content changes. With such features,
ILCAS is able to “perceive” video dynamics and quickly
adapt to content changes. In addition, the increasingly dense
deployment of camera networks offers an opportunity for

cross-camera collaboration to achieve more propoer VA
configuration adaption. This is because cameras deployed in
the same regions or along the same roads often share some
spatial and temporal correlations. Hence, ILCAS also dis-
covers the camera correlations and leverages a cross-camera
collaboration scheme to select more accurate configurations
and adapt to more complex scenarios.

To summarize, the main contributions of this paper are
as follows:

• We propose ILCAS, the first IL-based framework for
configuration optimization for live VA, which elim-
inates the weaknesses of handcrafted rewards that
commonly exist in previous DRL-based methods.

• We propose a lightweight and useful indicator motion
feature map to infer video dynamics, which enables
ILCAS to quickly adapt to the content changes of
video.

• We explore the spatio-temporal correlations in a cam-
era network and design an efficient cross-camera col-
laboration scheme, which allows ILCAS to achieve
more robust performance in complex scenes.

• We evaluate the performance of ILCAS over various
real-world videos and network traces using trace-
driven simulations. Results demonstrate that com-
pared to state-of-the-art profiling-based and DRL-
based solutions, ILCAS improves the mean accuracy
by 15.0–20.9% and 2.0–9.6%, while reducing the
mean lag by 57.4–85.3% and 19.9–74.0%, respec-
tively. In addition, we also verify the effectiveness
of ILCAS in the multi-camera environment.

The rest of this paper is organized as follows. Section 2
introduces the motivation of this work. Section 3 provides
the system overview of ILCAS. Next, the methodology of
extracting motion feature map is presented in Section 4. We
elaborate the detailed design of IL-enabled adaptive config-
uration selection in Section 5 and present the cross-camera
collaboration scheme in Section 6. We then conduct exten-
sive experiments to evaluate the performance of ILCAS in
Section 7. The related work is provided in Section 8. Finally,
Section 9 concludes this paper.

2 MOTIVATION

2.1 Inferring Video Dynamics with Motion Feature Map
One fundamental challenge of VA configuration optimiza-
tion is how to handle the fine-grained video content dynam-
ics. The optimal configuration varies with dynamic video
content, and their relationship is hard to model or predict.
One way to infer video dynamics is using optical flow,
a concept widely studied in computer vision community.
Despite its capability to provide pixel-level information of
content changes, the calculation of optical flow is time-
consuming [13], thus preventing its usage in live VA. Ex-
isting work [10] proposed to quantify video dynamics by
comparing the volumes of current and previous chunks in
the same configuration. The rationale behind is that an in-
creasing bitrate means increasing content dynamics, which
may cause performance degradation of a configuration. Yet,
this approach only provides coarse-grained information and
introduces additional encoding overhead [10].

IEEE TRANSCATIONS ON MOBILE COMPUTING 3

……

(a) Frames of a video chunk

(b) Extracted motion feature map

Fig. 1. Illustration of motion feature map. The brighter a region is, the
more significant content changes in that region are.

Our goal is to find a lightweight indicator that can
accurately capture the fine-grained video content dynamics.
To achieve this, we resort to motion vectors, the products
in common video codecs such as MPEG-2 and H.264. In
an encoded video stream, each frame is divided into mac-
roblocks with pre-determined size, which ranges from 4× 4
to 16 × 16 pixels. Video encoder adopts a block matching
algorithm to find a block similar to the one that is encoded
on the reference frame. The absolute positions of source and
destination of a macroblock then define a motion vector
m⃗ = ((srcx, srcy), (dstx, dsty)). By definition, motion vec-
tors naturally capture the content changes of frames, and
thus open new opportunities for inferring video dynamics.
Hence, in this paper, we use motion vectors to derive
lightweight and useful motion feature maps to characterize
content dynamics. We extract motion vectors from the en-
coding process and calculate the motion feature maps on the
camera, then send these feature maps as grayscale images
to the configuration controller to assist it making decisions
(see Section 4). Figure 1 illustrates the visualization of a
motion feature map. As shown, if the region is brighter, the
content changes in that region are more significant. It is clear
that motion feature maps intuitively describe the content
changes of video, allowing ILCAS to visually “perceive”
the video dynamics and make more adaptive configuration
decisions. Besides, as shown in Table 1, the computation and
transmission overhead of motion feature maps is negligible.
For instance, for a 1080p video, the calculation of a feature
map only takes 47ms, far less than the chunk length of 1s.
Moreover, its size (3.47KB) accounts for less than 1% of the
chunk size1.

2.2 From Profiling-based to Learning-based Adapta-
tion

Previous works mostly utilize the profiling-based strategy to
seek the best configuration. As illustrated in Figure 2(a),
they extract a small portion of video (e.g., T0) streamed in
golden configuration to profile the “best” configuration. The
“best” configuration is then applied to the rest of the video
clip (e.g., T1 to T3). This strategy, however, suffers from

1. Note that the motion feature map is calculated at chunk-level, not
frame-level.

TABLE 1
Overhead of Motion Feature Maps.

Resolution† Computation
Time‡

Image Size Image Size
Chunk Size

240p 2ms 0.47KB 0.98%

480p 9ms 1.47KB 0.79%

720p 20ms 2.47KB 0.64%

1080p 47ms 3.47KB 0.31%
† The frame rate and quantization parameters of each video are

fixed to 30 and 29, respectively. The chunk length is 1 second.
‡ Time measurement is performed on an Intel i5-8265U CPU.

Task process is restricted to use only 1 CPU core.

C0 C4

T = 0 T = 4

(a) Profiling-based strategy (coarse-grained)

C0 C1 C2 C3 C4 C5 C5

T = 0 T = 4T = 2 T = 6

C6

(b) Learning-based strategy (fine-grained)

Fig. 2. Comparison of profiling-based and learning-based strategies.

two key limitations. First, each profiling process requires
to stream a golden part as the ground truth to compute
accuracy. This strategy indeed wastes scarce bandwidth as
this profiling window usually accounts for 40% to 75% of
the overall resources consumption through our empirical
observation of previous work [8]. Second, since profiling is
expensive, the gap between each profiling window has to be
large enough (usually 4 seconds [8]) to reduce the profiling
cost, which therefore only achieves coarse-grained adaptation
and fails to adapt to the dynamics of video contents.

To address this problem, we propose the learning-based
strategy, as shown in Figure 2(b), which achieves fine-grained
adaptation (e.g., 1 second in our later experiments). The key
idea is an offline training phase where the model learns
from past videos, and an online inference phase using the
well-trained model without streaming golden configuration,
which saves substantial bandwidth resources. Since the
inference phase has little overhead, the analytics window
can be small enough to achieve fine-grained adaption.

2.3 From Reinforcement Learning to Imitation Learning
The heavy reliance of reinforcement learning (RL) on well-
defined reward functions restricts its applications in com-
plex tasks, where crafting such functions is extremely dif-
ficult [14]. In the context of configuration-adaptive video
streaming, it is non-trivial to quantify the trade-off between
VA accuracy and upload lag or resource consumption. The
reason lies in the complex relationships between different
performance metrics as well as the varying preferences of
high-level applications for them. In consequence, RL may
lead to poor performance or uncontrolled behavior.

Existing DRL-based solutions [10] [11] explicitly define
reward as a linear function with fixed weight parameters

IEEE TRANSCATIONS ON MOBILE COMPUTING 4

 Scenario 1
 Scenario 2

 Scenario 3
0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ac

cu
ra

cy
0.84

0.91

0.67

0.81

0.73

0.87

CASVA Expert

(a) Mean accuracy

 Scenario 1
 Scenario 2

 Scenario 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
La

g
(s

ec
on

ds
) 0.69

0.46

0.56

0.16

0.340.31

CASVA Expert

(b) Mean lag

Fig. 3. Illustration of the ineffectiveness of training agent with hand-
crafted rewards (Scenario 1: stationary video; Scenario 2: dash video;
Scenario 3: stationary video and poor network condition).

to measure the trade-off between different metrics. Such
function is then used to train their agent. Although this
approach may produce acceptable results in some cases,
the agent’s performance may drift far from the optimal
especially in some scenarios where the fixed reward func-
tion fails to characterize the trade-off. We take CASVA [10],
the state-of-the-art DRL-based solution, as an example to
illustrate the ineffectiveness of this approach. We vary the
camera videos and network traces while fixing the weight
parameters of reward function in CASVA, and use CASVA
to select configurations in difference scenarios. We consider
object detection as the vision task, and accuracy and upload
lag as performance metrics. Following previous work [8],
the detection accuracy of a video chunk is calculated as
the fraction of frames with F1 scores ≥ 70%, while F1
scores are computed by comparing the detected bounding
boxes of golden configuration and selected configuration.
The Intersection over Union (IoU) threshold for counting
true positive detection is set to 50%. The upload lag of
a chunk is defined as the difference between its expected
upload time and actual upload time [10]. A larger lag means
longer latency, thus decreasing the efficiency of live VA.

The measurement results are reported in Figure 3. It
can be seen that in Scenario 1, although CASVA produces
50% more lag than the expert (an offline optimal policy,
see Section 5), its mean accuracy is only 7% lower than the
expert. However, when the video type changes (Scenario
1 → Scenario 2), the overall performance gap between
CASVA and expert significantly increases due to the higher
complexity (e.g., faster scene changes) and larger bitrate of
dash video. Besides, when the network condition becomes
poor (Scenario 1→ Scenario 3), CASVA aggressively selects
cheap configurations to ensure small lag in sacrifice of VA
accuracy, which therefore results in a larger accuracy gap
(7% → 14%). The poor performance of CASVA stems from
the usage of fixed reward function, which fails to guide
the agent to properly select configurations to balance the
inference accuracy and upload lag. To conclude, learning
by reward function fails to achieve the best trade-off and
suffers from the scalability issue. While it is possible to
improve the performance of CASVA in Scenario 2/3 by re-
tuning the weight parameters of its reward function, such

fine-tuning process, in practice, is manually performed in
a trial-and-error manner [15], which is labor-intensive and
time-consuming.

In this paper, we leverage the advanced imitation learn-
ing (IL) [12] technique to train our agent from expert’s
demonstrations. We design an expert to teach the agent how
to solve the task of configuration selection. In this context,
the agent learns the expert’s underlying pattern and imitates
the expert’s behavior to select configurations, which allows
our agent to achieve better trade-off and improve its overall
performance. Moreover, thanks to the expert’s guidance to
solve the task in different scenarios, the scalability of our
agent is also greatly improved.

2.4 From Single-camera to Cross-camera Adaption
In a camera network, each camera can only acquire partial
information due to the limited field of view (FOV), which
restricts the performance of single-camera-based configu-
ration adaption. Take camera pair A and B in Figure 4 as
an example, whose FOVs are illustrated in Figure 5. In this
scenario, camera B applies a cheap configuration (e.g., low
frame rate and resolution) to save network resources since
there is no object in the view. However, the information in
camera A’s FOV indicates that many vehicles will appear
in camera B’s FOV in the near future. Since camera B is
unaware of the upcoming of vehicles due to the limited FOV,
it will still keep a cheap configuration in the following video
chunk and thus fails to detect those vehicles, resulting in
accuracy loss. This problem can be addressed if we exploit
the camera relationships for configuration adaption. For
instance, the accuracy loss of camera B can be avoided if it is
alarmed of the upcoming vehicles with the FOV information
from camera A.

Nevertheless, utilizing the camera relationships for more
accurate configuration adaption is challenging, due to the
complex spatio-temporal correlations of cameras. Figure 6
shows the camera correlations of the camera network in
Figure 4. Note that the sum of each row and column in
Figure 6(a) exceeds 100% since there is overlap between
cameras’ FOV, i.e., the same object may appear in different
cameras’ FOV within a certain time. As shown, 88.3% of
vehicles from camera A will next be detected in camera C
in 2.7 seconds on average. In that case, camera A can be
the source camera to target camera C, so camera C can
utilize the information from camera A for configuration
adaption. However, it is not feasible to take camera C as
the source camera, and camera A as the target camera in
turn since only 17.8% of vehicles appear in A’s FOV after
appearing in C’s FOV. The reason is that most of the objects
appearing in camera C’s FOV next move to camera D’s FOV,
which indicates that specific analysis and quantification is
necessary for utilizing the spatio-temporal information of
cameras.

To tackle the above challenges, in our cross-camera col-
laboration scheme, we quantify the spatio-temporal correla-
tions of cameras and introduce an info-sharing mechanism
to share the FOV information with motion feature maps
across cameras. Leveraging the motion feature maps from
correlated cameras, each camera can infer the future video
dynamics more accurately, thus achieving more proper con-
figuration adaption.

IEEE TRANSCATIONS ON MOBILE COMPUTING 5

B
A

C

D

Fig. 4. Topology of a real-
world camera network [16].

Next
Video Chunk

Target Camera B

Direction of
Vehicles

Bounding Box Cheap Configuration
No objects

Source Camera A

Expensive
Configuration

Target Camera B

Direction of
Vehicles

Lost
Bounding Box

Source Camera A

Expensive
Configuration

Cheap Configuration
Lost Accuracy

Fig. 5. Limitation of the single-camera-based adaption.

A

B

C

D

0.0 91.6 88.3 31.0

93.3 0.0 28.0 43.4

17.8 25.5 0.0 79.3

28.5 32.5 76.7 0.0

So
u

rc
e

 C
am

e
ra

Target Camera

Traffic P
e

rce
n

tage
 (%

)

_0

_100

_50

A B C D

(a) Spatial Correlations

0.0 4.9 2.7 6.5

3.8 0.0 7.2 7.0

4.4 3.6 0.0 0.8

2.6 3.3 0.9 0.0

Traffic Tim
e

 G
ap

 (s)

_10

_<1

_5

Target Camera

A B C D

A

B

C

D

So
u

rc
e

 C
am

e
ra

(b) Temporal Correlations

Fig. 6. The spatial and temporal correlations of cameras.

3 SYSTEM OVERVIEW

Figure 7 demonstrates the system overview of ILCAS, which
consists of three core components: motion feature map
extraction module, IL-enabled configuration controller and
cross-camera collaboration scheme.

Motion feature map extraction. On the camera side, the
camera extracts raw frames from its buffer, encodes them
with specific configuration, and sends the encoded chunk
to the server for DNN inference (e.g., Faster RCNN [3],
Yolo [17]). During the encoding process, the camera extracts
motion vectors from its codec, and computes the motion
feature map which reflects the content changes of video.
Such feature map is then sent to the configuration controller
to assist the controller selecting configurations.

IL-enabled configuration controller. Upon receiving the mo-
tion feature map, the controller observes the environment
state (e.g., network throughput, camera buffer size) and
uses its well-trained agent to select the configuration for
encoding the next chunk. The agent is offline trained with
the advanced IL framework, where an expert policy is
designed to provide high-quality demonstrations for guid-
ance. Considering the limited computing power of front-end
devices, we implement the configuration controller on the
resource-abundant edge/cloud servers.

Cross-camera collaboration (optional). When the target cam-
era is deployed in a dense camera network, ILCAS can
also exploit the information of other correlated cameras
to achieve more robust configuration adaption. Specifically,
ILCAS identifies the spatio-temporal correlations of cameras
offline, collects and stores their motion feature maps in
the database, and leverages an efficient Convolutional Long
Short-Term Memory (ConvLSTM) [18] model to extract hid-
den features from these motion feature maps. The outputs
of ConvLSTM model are then fed into the agent for selecting
more appropriate configurations for the target camera.

4 MOTION FEATURE MAP EXTRACTION

As the product of video encoding, motion vector naturally
crafts the content changes of video. Specifically, motion
vector describes the positions of two similar macroblocks
in the encoded and reference frame. For instance, let (x, y)
represent the center of a block in the current encoded frame,
and (x′, y′) be the center of its similar block in the reference
frame, then vector m⃗ = ((x′, y′), (x, y)) defines a motion
vector. For a block with center (x, y) and motion vector
m⃗ = ((x′, y′), (x, y)), we define its motion degree as the
Manhattan Distance of its motion vector, so as to quantify
its movement information:

md(x, y) = |x− x′|+ |y − y′| (1)

As there are multiple encoded and reference frame pairs
within a chunk, a macroblock may be associated with mul-
tiple motion vectors. Hence, we accumulate all the motion
degrees of a block (x, y), and obtain its overall motion
degrees within the chunk:

Md(x, y) =
∑

md(x, y) (2)

In this way, we can obtain the matrix Md recording the
overall motion degrees of all blocks. To derive the motion
feature map, we further apply the clipping and scaling
functions on matrix Md [13]. Specifically, each element of
Md is clipped by:

M clip
d (x, y) = clip(Md(x, y)/f, 0, 255) (3)

where f is the frame rate of the encoded chunk. Next,
by scaling M clip

d with the following function, the motion
feature map M of the current chunk is obtained:

M(x, y) =

 255, if M clip
d (x, y) ≥ σ,

255

σ
M clip

d (x, y), otherwise
(4)

where we empirically set σ = 20.
Note that in some codecs such as H.264, the macroblocks

may have variable sizes (e.g., 4×8, 16×16 pixels), which pre-
vents us from directly summing up the motion degrees of
blocks with the same center position. To tackle this problem,
we divide each macroblock into several microblocks with a
fixed size of 4 × 4 pixels2 and assign the motion degree
of such macroblock to its corresponding microblocks. For
example, an 8× 8 macroblock is divided into 4 microblocks.

2. The size of a microblock can be set to other values, depending on
specific codecs.

IEEE TRANSCATIONS ON MOBILE COMPUTING 6

Camera
Buffer

Video Codec

Extract
Frames

Processing
ModuleExtract

Motion Vector

Motion
Feature Map

Trained
Agent

Expert Policy

Demo
Buffer Pool

Provide
Demo

IL-based Offline
Training

Configuration
For Next Chunk

Camera Network Offline Profile
Camera Correlations

Motion Feature Map
Database

ConvLSTM
Model

Refined
Feature Maps

Camera Side
Server Side

§4 Motion Feature
Map Extraction

§5 Imitation Learning-enabled
Configuration Controller

§6 Cross-camera Collaboration

Video Analytic
Model

Encoded Chunk

Analytic Results

Fig. 7. System framework of ILCAS.

Assume the motion degree of this block is 10, then each
of its microblock is assigned with motion degree 10. In
this context, the motion degree of a microblock can be
represented by one pixel value, and thus the size of the
resulting motion feature map is reduced by 4×4 = 16 times.
This can also significantly reduce the transmission overhead
and the controller’s computation overhead of processing the
feature map.

The extracted motion feature maps provide microblock-
level information of video content changes. The size of a
microblock is 4 × 4 pixels, which accounts for 0.02% of a
240p video with 320 × 240 pixels. Therefore, even in low
resolution videos, motion feature maps can still capture fine-
grained changes of video contents, enabling the configura-
tion controller to perceive video dynamics and select more
appropriate configurations. Furthermore, the computation
and transmission overhead of a motion feature map is
also negligible. According to the measurements reported in
Table 1, for a 1080p video, the calculation of a feature map
only takes 47ms, and its size is only 3.47KB. It’s worth noting
that motion feature map is extracted at the chunk level
(i.e., one feature map per chunk) rather than frame level.
This means that the motion feature maps can be utilized to
capture fine-grained video content dynamics with minimal
overhead.

5 IL-BASED ADAPTIVE CONFIGURATION SELEC-
TION

In this section, we present the detailed design of IL-based
adaptive configuration selection module in ILCAS. We be-
gin by describing the optimization problem of configuration
selection in live VA, then we propose an efficient IL-based
method to solve the problem.

5.1 Problem Description
In a live VA pipeline, frames are consistently captured by
the camera and encoded as video chunks to transmit to the
server for analytics. Assume that the duration of each chunk
is T seconds. The VA system works on a series of chunks

{1, 2, ..., N}, where N can be infinite for continuous analyt-
ics. Let ci ∈ C denote the configuration applied on chunk
i in the encoding process, where C is the set of all possible
configurations. In this paper, we consider a configuration
as the combination of three knobs, i.e., ci = {ri, fi, qi},
where ri, fi, qi represent the resolution, frame rate (i.e.,
frame per second, FPS) and quantization parameter (QP),
respectively. The objective of configuration-adaptive video
streaming is to select the best configuration for each chunk
i ∈ {1, 2, ..., N} to maximize the task accuracy A(ci) and
minimize the upload lag L(ci) [10]. The upload lag of a
chunk is defined as the difference between its expected
upload time and actual upload time. For example, assume
that chunk i is uploaded to server at time ti, while its
expected upload time3 is i × T , then the lag experienced
by chunk i is ti − i × T . Note that lag is non-negative, i.e.,
L(ci) = max(ti − i× T, 0).

Despite its simplicity, the configuration adaption prob-
lem encounters two practical challenges. First, there exists a
contradiction between the two goals of live VA. Intuitively,
selecting an expensive configuration will result in a high
accuracy but consume much bandwidth. When the network
bandwidth is dynamic and scarce, this may quickly deplete
the bandwidth resources and produce great lag, decreas-
ing the efficiency of live VA. On the other hand, a cheap
configuration may reduce the lag and transmission cost,
but the accuracy may suffer due to the degraded video
quality. Second, the lag of chunk i is not only affected by
its upload delay ui, but also the lag of its previous chunk
i − 1, i.e., L(ci) = max(L(ci−1) + ui − T, 0). Hence, the
configuration of a chunk has cascading effects on the sub-
sequent chunks, which suggests the problem is essentially
a sequential decision problem. For instance, streaming the
current chunk with an unnecessary expensive configuration
tends to increase lag, and therefore, the following chunks
may be streamed with cheap configurations to achieve live
analytics in the risk of accuracy drop.

3. In this paper, we assume that the start time of a live video
streaming is 0.

IEEE TRANSCATIONS ON MOBILE COMPUTING 7

QP

FPS

Resolution

Upload Delay

Network
Throughputs

Chunk
Volumes

Camera
Buffer Size

1D CNN
(1x4,1,0,128)

1D CNN
(1x4,1,0,128)

1D CNN
(1x4,1,0,128)

1D CNN
(1x4,1,0,128)

1D CNN
(1x4,1,0,128)

1D CNN
(1x4,1,0,128)

Motion
Feature Map

2D CNN
Sub-network

M
E
R
G
E

FC
(384)

Flatten

Flatten

Flatten

Flatten

Flatten

Flatten

Flatten

FC
(128)

M
E
R
G
E

FC
(128)

S
O
F
T
M
A
X

(a) Neural network architecture of the agent

2D CNN
(5x5,1,2,32)

MaxPool
(3x3)

2D CNN
(5x5,1,2,32)

MaxPool
(3x3)

2D CNN
(3x3,1,1,64)

MaxPool
(2x2)

2D CNN
(3x3,1,1,32)

MaxPool
(2x2)

(b) Architecture of 2D CNN sub-network

Fig. 8. Neural network architecture of ILCAS agent. Model parameters:
1D/2D CNN (kernel size, stride, padding, channels), FC (number of
neurons), MaxPool (kernel size).

5.2 Methodology

Due to the aforementioned challenges, it is impractical to
solve the configuration selection problem with analytical
models, which motivates us to design a learning-based
method. In particular, we adopt the advanced imitation
learning (IL) [12] framework to solve the problem, which
consists of an agent (represented as a neural network) to
select configurations, and an expert model to “teach” the
agent in the offline training phase. The details are explained
as follows.

5.2.1 Neural Network Architecture

Inputs: At each time stamp t, the agent will receive a set of
observable variables st, representing the state information
of network environment, camera buffer and video content
etc. Specifically, we define st as follows:

st = {v⃗t, n⃗t, u⃗t, bt, r⃗t, f⃗t, q⃗t,Mt}

Here, v⃗t is the vector of past k chunk volumes. n⃗ is the
throughput measurements for past k chunks, which rep-
resents the network conditions. u⃗t is the upload delay of
past k chunks. bt represents the camera buffer size, i.e., how
many frames (e.g., 2 seconds) are buffered at the camera
when uploading chunk t. The larger buffer size bt, the larger
accumulative upload lag. r⃗t, f⃗t, q⃗t represent the resolution,
FPS and QP selected for past k chunks. Finally, Mt is the
motion feature map for chunk t, which allows the agent to
perceive the content dynamics of videos.
Outputs: The agent takes the state information st as input,
and outputs the probability distribution of each configura-
tion. The configuration with the maximum probability will
be selected as the action at corresponding to st, which will
be sent back to the camera to encode the next video chunk.
Network Architecture: Figure 8 depicts the neural network
architecture of the agent. For numerical inputs, we first use
1D CNN layers to extract hidden features from each input
vector. These features are then flattened, concatenated as a

Agent Discriminator

Expert Policy Demonstration

Learning Signal
Train with RL framework (e.g., PPO)

Expert
Policy

Trajectory
(Demo)

Learning
Signal

Sample

Sample

TrajectoryTrajectory

Train Discriminator Train AgentTrain Discriminator Train Agent

Fig. 9. General training procedure of GAIL.

new vector, and fed into a fully connected (FC) layer. Con-
sidering that camera buffer size contains more important
information for making decisions, especially for controlling
lag, we provide a shortcut for input bt by directly concate-
nating it with the vector merged by the flattened 1D CNN
features. For the input motion feature map, we leverage 2D
CNN sub-network (see Figure 8(b)) to extract underlying
features of content dynamics, which are next fed into a FC
layer. All processing results are merged together, and fed to
another FC layer to learn the complex relationship between
different features. Finally, a softmax layer is used to output
the probability distribution of each configuration.

5.2.2 Learning Framework
We adopt the state-of-the-art Generative Adversarial Imi-
tation Learning (GAIL) [19] as the IL framework to train
our agent since it outperforms traditional IL frameworks in
efficiency and scalability.

Figure 9 illustrates the general training procedure of
GAIL. As shown, GAIL consists of three core components:

• Expert provides demonstrations of solving the adap-
tive configuration selection problem for training.

• Discriminator is used to facilitate the agent to learn
the behavior pattern of the expert. It in essence oper-
ates as a binary classifier that distinguishes between
the expert’s and agent’s behaviors.

• Agent learns to imitate the expert’s behavior of taking
actions (i.e., selecting configurations) with the assis-
tance of the discriminator.

The training procedure of GAIL is implemented in the
adversarial training manner [19]. Let πE represent the expert
policy, and πθ represent the agent parameterized by θ.
Define Dω as the discriminator model parameterized by ω.
At each training step t, GAIL samples a demonstration and
trajectory composed of state-action pairs under the expert
and agent policy, respectively: τE = {ŝi, âi}ni=0 ∼ πE ,
τt = {si, ai}mi=0 ∼ πθt . It then uses τE and τt as the training
data to update the discriminator Dωt

→ Dωt+1
with the

binary cross entropy loss function. Next, the discriminator
Dωt+1

is used to update the agent πθt → πθt+1
, which

guides the agent to learn the behavior pattern of the expert.
Specifically, for each state-action pair (s, a) sampled by the
agent, the discriminator takes (s, a) as input and computes
Dωt+1

(s, a) indicating the probability of the expert taking

IEEE TRANSCATIONS ON MOBILE COMPUTING 8

Algorithm 1: Expert
Input: N : chunk number; C: set of all possible

configurations; L: maximum acceptable lag
Output: C: configurations for each chunk
// Initialization

1 Initialize matrix A with 0, matrix S and Q with ∅.
2 foreach c ∈ C do
3 l = max(0,U1(c)− T)
4 if l ≤ L and A1(c) > A[1, l] then
5 A[1, l]← A1(c)
6 S[1, l]← c
// Update

7 for i← 1 to N − 1 do
8 for j ← L to 0 do
9 if S[i, j] = ∅ then

10 continue. // Skip invalid entries
11 foreach c ∈ C do
12 l = max(0, j + Ui+1(c)− T)
13 if l ≤ L and A[i, j] +Ai+1(c) > A[i+ 1, l]

then
14 A[i+ 1, l]← A[i, j] +Ai+1(c)
15 S[i+ 1, l]← c
16 Q[i+ 1, l]← (i, j)
17 C← {}
18 i← N
19 j ← argmax

l∈[0,L]

A(N, l)

20 while i > 0 do
21 C ∪ (i, S[i, j])
22 i, j ← Q[i, j]
23 return C

action a when it encounters state s. The higher probability
Dωt+1(s, a) means the agent imitating the expert’s behavior
better. Hence, the learning signal for training the agent is
defined as:

p(s, a) = logDωt+1(s, a) (5)

p(s, a) can be regarded as the reward signal in RL. Thus,
based on the trajectory of (s, a, p(s, a)), the agent can be
updated using common RL framework such as Proximal
Policy Optimization (PPO) [20]. Note that both the expert
and discriminator are designed to guide the training of
agent, and thus are used only in the offline training phase.

5.2.3 Expert Design
The key of implementing GAIL in our problem is the design
of discriminator and expert. Following the practice in [19],
the discriminator can share the same architecture with the
agent with minor modifications: the second merged features
in Figure 8(a) are concatenated with the action one-hot
vector, and the output layer is replaced by sigmoid layer.
Therefore, the technical challenge here is the expert design.

Recall that the optimization problem of adaptive config-
uration selection for live VA is to select the best configura-
tion for each chunk to maximize VA accuracy and minimize
the upload lag. This problem has no analytical solutions
due to the intrinsic conflicts between two goals. Fortunately,
keeping the upload lag under a certain threshold is ac-
ceptable in practice. The rationale behind is that different

applications have different lag goals, meaning they have
tolerance on lag to some degrees [7]. For instance, lagging
tens of seconds to upload the video is even acceptable for
license plate reader at toll route [21] because the billing can
be delayed. Based on this observation, the aforementioned
problem can be relaxed as finding the configuration for each
chunk to maximize the accuracy while keeping the upload
lag under L. Here, L represents the maximum acceptable
upload lag, which can be easily determined according to
specific applications.

As shown in Algorithm 1, we design the expert with
an efficient dynamic programming algorithm to solve the
problem. Matrix A[i, j] records the maximum accuracy of
chunk i when upload lag is j, S[i, j] records the configura-
tion when A[i, j] achieves the maximum, and Q[i, j] records
the previous entry that transits to S[i, j]. Variable T is the
length of each chunk. Since the expert is an offline policy,
we assume that it has the full knowledge of configuration
performance and network conditions, and thus is aware
of the accuracy Ai(c) and upload delay Ui(c) for chunk
i with configuration c. The main idea of the algorithm is
to iterate over all possible lag for each chunk, and select
the configuration with the maximum accuracy under each
situation. Line 1-16 compute matrix S and matrix Q, then
line 17-22 search for the optimal configuration for each
chunk according to S and Q through backtracking. The
output of the algorithm is a set of selected configurations
C (line 23). The expert’s demonstration composed of state-
action pairs can be obtained by replaying the video with the
selected configuration set C. The detailed process is omitted
here for simplicity.

Note that the expert is infeasible to online adjust config-
urations for live VA streaming, as it requires the streaming
of chunks in golden configuration to profile the accuracy
of each configuration as well as the perfect knowledge
of network conditions. The role of expert is to guide the
training of agent, and therefore it is used only in the of-
fline training phase. Besides, the upload lag is originally
a continuous variable, but in our practical implementation
of Algorithm 1, we discretize this variable with certain
granularity (e.g., using every 0.1 second as a gap), since two
very close lags will not make a big difference.

The time complexity of expert algorithm is O(NL|C|),
where N is the chunk number, L is the maximum acceptable
upload lag, and |C| is the number of all possible configura-
tions. In the later experiment settings (see Section 7.1), we
find that the runtime of expert to sample one demonstration
is less than 1 second. Therefore, the running cost of expert
introduced to the training process is negligible.

6 CROSS-CAMERA COLLABORATION

In this section, we introduce the detailed design of the cross-
camera collaboration scheme in ILCAS. We first quantify
the spatio-temporal correlations across cameras and then
elaborate how to utilize the camera correlations to achieve
more accurate configuration adaption.

6.1 Spatio-Temporal Correlations
Spatial correlations: The trajectories of objects in camera
networks show a strong correlation, which indicates a high

IEEE TRANSCATIONS ON MOBILE COMPUTING 9

(a) Motion feature map w/o filter (b) Motion feature map with filter

Camera Directions Exiting Direction Exiting Point

(c) Directions of camera’s FOV

Fig. 10. Illustration of directions and motion feature map filter.

degree of spatial correlation of cameras. The degree of
spatial correlation S between source camera cs and target
camera cd can be quantified by the ratio of: (a) the number
of objects appearing in both the source camera’s FOV and
the target camera’s FOV Ocs,cd , to (b) the number of objects
appearing in the source camera’s FOV Ocs [22]:

S(cs, cd) =
∑

Ocs,cd∑
Ocs

(6)

Temporal correlations: The traveling time of objects be-
tween camera pairs reveals their temporal correlations over
time. If a large portion of objects leaving source camera cs
to target camera cd arrives within a certain time duration
[t1, t2], the camera cd is highly correlated to the camera cs in
the time window [t1, t2]. The degree of temporal correlations
T can be quantified by the ratio of: (a) objects arriving cd
from cs in a certain time window [t1, t2] to (b) total objects
arriving cd from cs [22]:

T(cs, cd, [t1, t2]) =
∑t2

t=t1
Ocs,cd∑

Ocs,cd

(7)

6.2 Cross-Camera Collaboration Design

Info-sharing mechanism: As described in Section 2.4, the
key to cross-camera-based configuration adaption is to uti-
lize the information from correlated cameras. To this end,
we design an info-sharing mechanism to share the motion
feature maps across cameras. As a target camera may have
many source cameras, some of which may not be highly-
correlated, we set a spatial threshold Sthresh and a temporal
threshold Tthresh to filter out low-correlated cameras. Given
a target camera cd, we search for the source camera cs within
the time window [t1, t2], which satisfies S(cs, cd) ≥ Sthresh
and T(cs, cd, [t1, t2]) ≥ Tthresh. Cameras that do not meet
these conditions are regarded as low-correlated cameras,
which are filtered out and prevented from sharing informa-
tion with the target camera. Finally, for the source camera cs

which meets the aforementioned conditions, cd can utilize
the motion feature maps from cs in the certain time duration
[t1, t2]. Specifically, as camera video is organized as video
chunks to transmit, we collect the motion feature maps from
cs at the past chunk p where p ∈ [t1, t2].
Motion feature map filter: Motion feature map is a piece of
important information for ILCAS’s agent to select configu-
rations as it reflects video content dynamics, but directly ap-
plying the raw feature maps from source cameras to target
camera is infeasible. This is because the noise in raw feature
maps from source cameras (e.g., redundant information
about objects that will not move to the target camera) may
misleads the agent to select inappropriate configurations.
Therefore, we design a motion feature map filter for noise
filtering. As shown in Figure 10, we divide the camera’s
FOV in 8 directions every 45◦. We denote Dcs,cd as the
exiting direction of objects coming from source camera to
target camera, (XD, YD) as the exiting point on the motion
feature map and D(Vx,y) as the direction of the motion
degree V at pixel x, y. To filter out the noisy information,
we only save motion degrees that have the same direction as
Dcs,cd . Besides, we also apply a linear decay method on the
motion feature map according to the distance between each
pixel and the existing point. The rationale behind is that
objects located nearer the existing point will appear in the
target camera’s FOV sooner, and vice versa. To summarize,
for the motion feature map with X rows and Y columns,
the design of filter is as follows:

Vx,y =

Vx,y×(1−
√

(XD−x)2+ (YD−y)2√
(X−XD)2+(Y −YD)2

),D(Vx,y)=Dcs,cd

0, D(Vx,y) ̸= Dcs,cd

(8)

Cross-camera feature extraction model: After filtering, the
motion feature maps collected from source camera now can
be used to infer future video dynamics for the target camera.
To extract hidden features from these feature maps, we
introduce Convolutional Long Short-Term Memory (Con-
vLSTM) [18] as the feature extraction model, which has
a strong ability in extracting spatio-temporal correlations
and is widely used in forecasting problems. We collect past
motion feature maps from source camera and target camera,
then organize them as feature map groups, respectively.
The ConvLSTM then extracts the spatio-temporal features
from the feature map groups and outputs the refined feature
maps. These refined feature maps are essentially the motion
feature maps predicted by ConvLSTM, which reflects the
future video dynamics more accurately. Next, the outputs
of ConvLSTM are fed into the agent (i.e., the 2D CNN
sub-network to process motion feature maps, as shown in
Figure 8) for more proper configuration selection.

7 EVALUATION

7.1 Evaluation Setup
Vision task and video datasets: We take object detection,
a typical video analytic task, as an example to evaluate
ILCAS. We use the pretrained FasterRCNN-ResNet101 [3]
as the detection model. We collect five video clips as the
evaluation dataset from YouTube, and use a cross camera

IEEE TRANSCATIONS ON MOBILE COMPUTING 10

TABLE 2
Video dataset information.

Video Type Description

Dash1 [23] Dash camera Driving downtown in Chicago at daytime.

Dash2 [24] Dash camera Driving downtown in London at night.

Stationary1 [25] Stationary traffic camera Road traffic video recorded on a sunny day.

Stationary2 [26] Stationary traffic camera Highway traffic video recorded on a sunny day.

Stationary3 [27] Stationary traffic camera Road traffic video recorded at sunset.

AI City [16] Stationary traffic camera Video collected from multiple cameras located at an intersection.

video dataset (collected from 2022 AI City Challenge [16])
to evaluate the effectiveness of the proposed cross-camera
collaboration scheme. The detailed information of video
datasets is presented in Table 2. Unless otherwise noted, the
chunk length of each video is set to 1 second, i.e. T = 1.
For each video, we use the first 80% of chunks for training
while the remaining 20% for testing.
Network traces: Since there are no existing bandwidth
datasets collected from the camera side, we use a public
4G/LTE bandwidth dataset [28] as an alternative to simulate
real-world network conditions for evaluation. However, the
mean bandwidth throughputs of all traces in the dataset
are too high (about 30Mbps) [28], while in practice the
bandwidth resources between the cameras and servers are
limited (e.g., 1Mbps in average) [6]. To this end, we scale
the traces down to a lower range of (0.2, 2.0) Mbps to
match the practical real-world network conditions of cam-
eras. To utilize the fluctuation patterns of the bandwidth
traces, we scale the traces while maintaining their variances.
This method of preprocessing the bandwidth dataset is also
adopted in [10]. When conducting cross-camera evaluation,
we treat the network environment of each camera as an
independent system that does not affect the others. This is
because there is no direct information transmission between
cameras since motion feature maps are uploaded to servers
instead of direct transmission across cameras, as shown in
Figure 7.
IL training settings: We empirically feed past k = 8 sample
information into our agent. We use PPO [20] framework to
update agent’s parameters during IL training. By default,
the learning rate is 0.0001, the discount factor is 0.95,
the clipped parameter is 0.2 and the entropy coefficient is
0.02. We consider a configuration as the combination of
three knobs: resolution r ∈ {1, 0.8, 0.6, 0.5, 0.4, 0.3}4, FPS
f ∈ {30, 15, 10, 5, 2, 1} and QP q ∈ {21, 25, 29, 33, 37, 41}.
This results in a set of 216 distinct configurations and thus
the agent’s output dimension is 216. The max acceptable
upload lag of expert is empirically set to 1 second, i.e.,
L = 1.

We use PyTorch5 and Tianshou6 to implement DNN
and PPO, respectively. All experiments are performed on a
trace-driven simulator, which streams video chunks from a
camera client to a server. The RTT time between the camera

4. Multiplying r with the original resolution of a video will obtain
the resolution of the resized video. For example, 1080p × 0.5 = 540p.

5. https://pytorch.org/
6. https://tianshou.readthedocs.io/en/master/

and server is set to 80ms. We run7 DNN inference on RTX
3080Ti and other computations on Intel Xeon Silver 4210.
Evaluation metrics: We consider mean accuracy, mean lag,
accuracy CDF and lag CDF as evaluation metrics. The mean
accuracy or lag is calculated as the mean inference accuracy
or upload lag of all test video chunks.
Baselines: We compare ILCAS with the following baselines,
which stand for the state-of-the-art profiling-based and
DRL-based solutions:

• Chameleon [8]: This approach divides a streaming
session into sequential windows, and each window
is further divided into several segments. It period-
ically profiles a set of candidate configurations in
the first segment of each window, and derives the
best configurations from the profiled ones for the
remaining segments in the window.

• CASVA [10]: This approach employs DRL to train an
agent for configuration selection, with the objective
of maximizing task accuracy while minimizing up-
load lag. It uses a handcrafted reward function dur-
ing the training process and also takes into account
the volume changes of the current and previous
chunks in the same configuration as an indicator of
content dynamics.

• Expert: We sample a demonstration under the expert
policy described in Section 5 to serve as the offline
optimal result.

7.2 ILCAS vs. Baselines
Figure 11 compares the performance of different methods
on various videos. It can be seen that Chameleon achieves
the lowest mean accuracy while producing the highest mean
lag. This is because the candidate configurations profiled by
Chameleon may not work well for the whole time window.
When the video contents or network conditions suddenly
change, the profiled configurations can produce low ac-
curacy or high lag, but Chameleon has to trigger a new
profiling process to update candidate configurations, which
only achieves coarse-grained adaption.

Compared to Chameleon, CASVA achieves higher accu-
racy and lower lag since it adopts an DRL-based learning
strategy for selecting configurations to better adapt to en-
vironment changes. However, there still exists a significant
performance gap between CASVA and Expert. In contrast,

7. The computing resources we use to run our experiments are highly
redundant.

IEEE TRANSCATIONS ON MOBILE COMPUTING 11

 Dash1 Dash2 Stationary1 Stationary2 Stationary3
0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Chameleon CASVA ILCAS Expert

(a) Mean accuracy

 Dash1 Dash2 Stationary1 Stationary2 Stationary3
0.0

0.3

0.6

0.9

1.2

M
ea

n
La

g
(s

ec
on

ds
)

Chameleon CASVA ILCAS Expert

(b) Mean lag

Fig. 11. The performance of different methods on various videos.

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Chameleon
CASVA
ILCAS
Expert

(a) Accuracy CDF

0 1 2 3 4 5 6 7 8
Lag (seconds)

0.6

0.7

0.8

0.9

1.0

CD
F

Chameleon
CASVA
ILCAS
Expert

(b) Lag CDF

Fig. 12. The performance of different methods on Stationary1 video.

ILCAS exhibits the smallest gap with the Expert, indicating
its superiority over CASVA. The performance gain of ILCAS
over CASVA can be attributed to two key aspects.

• Firstly, CASVA relies on chunk volume changes as
the indicator to infer content changes. However, this
indicator only provides coarse-grained information
and contains much noise, which may mislead CASVA
to select inappropriate configurations. On the other
hand, ILCAS leverages motion feature maps to ef-
fectively capture the fine-grained changes of video
contents. This enables ILCAS to efficiently adapt to
video dynamics and make more appropriate config-
uration selections.

• Secondly, CASVA employs a fixed reward function
for training, which fails to properly craft the trade-
off between accuracy and upload lag across different
scenarios. In contrast, ILCAS leverages the advanced
IL framework to train the agent. It efficiently utilizes
the expert as the offline optimal policy to guide
the agent in selecting configurations according to
environment changes such as video contents and
network conditions, thereby striking a good balance
between VA accuracy and upload lag.

As a result, ILCAS achieves the best trade-off be-
tween accuracy and upload lag compared to Chameleon and
CASVA. As depicted in Figure 11, ILCAS improves the
mean accuracy by 15.0–20.9% and 2.0–9.6% compared to
Chameleon and CASVA, respectively. Meanwhile, it signifi-
cantly reduces the mean lag by 57.4–85.3% and 19.9–74.0%.
Figure 12(a) and Figure 12(b) further compares the CDF
of accuracy and lag of different methods over Stationary1
video. As shown, a large proportion of ILCAS is con-
centrated in the range of higher accuracy and lower lag,
demonstrating the superiority of ILCAS over Chameleon and
CASVA. Specifically, as illustrated in Figure 12(a), there are

 Dash1 Stationary20.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Chameleon
CASVA

ILCAS
Expert

(a) Mean accuracy

 Dash1 Stationary20.0

0.3

0.6

0.9

1.2

M
ea

n
La

g
(s

ec
on

ds
)

Chameleon
CASVA

ILCAS
Expert

(b) Mean lag

Fig. 13. The generalization performance of learning-based methods
CASVA and ILCAS when trained on Stationary1 video and tested on
Dash1 and Stationary2 videos. The results of non-learning-based meth-
ods Chameleon and Expert on Dash1 and Stationary2 videos are also
presented for comparative analysis.

73.3% of chunks with the accuracy above 0.9 for ILCAS,
while this value decreases to only 58.3% and 41.7% for
CASVA and Chameleon, respectively. From Figure 12(b), we
can see that ILCAS successfully controls the upload lag
under 1 second for 93.3% of chunks, much higher than
CASVA and Chameleon.

Generalization. In order to evaluate the generalization per-
formance of learning-based methods, we conduct a case
study where both CASVA and ILCAS are trained on Station-
ary1 video and tested on Dash1 and Stationary2 videos. The
results are reported in Figure 13. For comparative analysis,
we also present the results of Chameleon and Expert on the
testing videos in Figure 13. Since Chameleon and Expert are
non-learning-based methods which do not require a training
process, their results remain the same as those reported in
Figure 11.

As depicted in Figure 13, ILCAS still outperforms
Chameleon and CASVA and achieves the smallest per-
formance gap with the Expert. For instance, on Dash1
video, ILCAS improves the mean accuracy by 14.4%/10.4%
and reduces the mean lag by 51.2%/27.2% compared to
Chameleon/CASVA. This demonstrates the superior general-
ization performance of ILCAS. The superiority of ILCAS can
be attributed to the common knowledge it learns from the
expert, such as selecting cheap configurations under poor
network environment and adapting configurations based
on video content changes. The learned common knowledge
enables ILCAS to generalize across different videos. This
indicates that it is possible to use ILCAS to serve multiple
cameras with one configuration selection agent instead of
training separate ones for each camera.

IEEE TRANSCATIONS ON MOBILE COMPUTING 12

 Dash1 Dash2 Stationary1 Stationary2 Stationary3
0.2

0.4

0.6

0.8

1.0
M

ea
n

Ac
cu

ra
cy

ILCAS w/o Expert ILCAS w/o MF ILCAS

(a) Mean accuracy

 Dash1 Dash2 Stationary1 Stationary2 Stationary3
0.0

0.3

0.6

0.9

1.2

M
ea

n
La

g
(s

ec
on

ds
)

ILCAS w/o Expert ILCAS w/o MF ILCAS

(b) Mean lag

Fig. 14. The performance of ILCAS w/o Expert, ILCAS w/o MF and ILCAS on various videos.

 Dash1 Dash2 Stationary1 Stationary2 Stationary3
0

100

200

300

400

Ep
oc

hs

ILCAS w/o Expert ILCAS w/o MF ILCAS

Fig. 15. Number of epochs for ILCAS w/o Expert,
ILCAS w/o MF and ILCAS to reach certain mean
accuracy and lag thresholds.

7.3 Ablation Study

In this part, we set up several experiments to provide a thor-
ough understanding of ILCAS, including the effectiveness
of IL framework and motion feature map, as well as the
impacts of parameter L on the performance of ILCAS.
Effectiveness of IL. We remove the IL framework from
ILCAS to explore its contributions to the performance of
ILCAS. Specifically, we train the agent without the guidance
of the expert, which forms the method ILCAS w/o Expert.
The agent of ILCAS w/o Expert is trained through the re-
inforcement learning framework with the reward function
defined as follows:

reward = α×Accuracy − (1− α)× Lag

where α ∈ [0, 1]. By default, α = 0.5.
Figure 14 depicts the performance of ILCAS and ILCAS

w/o Expert. As shown, without expert, the mean lag de-
creases to only a limited extent but at the cost of accuracy
drop. This is because without the expert to demonstrate how
to solve the task, ILCAS w/o Expert fails to achieve a good
trade-off between task accuracy and upload lag due to the
inappropriate definition of reward function. As a result, it
tends to conservatively pick up configurations that produce
low lag but in sacrifice of task accuracy. For instance, for
Dash1 video, the mean accuracy of ILCAS w/o Expert only
reaches 63.4%, more than 10% lower than that of ILCAS.
On the other hand, it marginally reduces the mean lag by
negligibly 0.05s compared to ILCAS. This indicates that
enabled by IL, ILCAS selects configurations more gracefully
by imitating the expert’s behavior and therefore strikes a
good balance between task accuracy and upload lag.
Effectiveness of motion feature map. We next compares the
performance of ILCAS and ILCAS w/o MF to evaluate the
effectiveness of motion feature map. To be more specific,
ILCAS w/o MF trains the agent with IL, but the motion
feature map is excluded from the agent’s input.

As illustrated in Figure 14, ILCAS w/o MF generally
produces much higher lag and meanwhile achieves lower
accuracy than ILCAS. For example, for Dash2 video, ILCAS
w/o MF causes about 3× the mean lag of ILCAS, while
its mean accuracy is still 3.1% lower than that of ILCAS.
The reason behind is that ILCAS w/o MF fails to adapt to
the dynamics of video contents. On one hand, it chooses
cheap configurations for chunks with fast scene changes,
which results in low accuracy. On the other hand, it selects
unnecessary expensive configurations for chunks with small
content changes, producing high lag. By contrast, ILCAS
is able to visually “perceive” content changes with motion

0 0.2 0.4 0.6 0.8 1.0
Mean Lag (seconds)

0.6

0.65

0.7

0.75

0.8

M
ea

n
Ac

cu
ra

cy

L = 0.2
L = 0.5

L = 1.0
L = 2.0

L = 3.0

Fig. 16. The mean lag vs. mean accuracy of ILCAS with different L. The
1-σ ellipses mark the performance variance of each solution. The center
dots in each ellipse indicate the average values of all testing results of
each solution.

feature map, and thus it succeeds in selecting appropriate
configurations that match the video dynamics.
Convergence comparison. As a supplement, we also com-
pare the convergence speed of ILCAS w/o Expert, ILCAS w/o
MF and ILCAS. Figure 15 plots the number of epochs for
each method to reach a certain accuracy threshold while the
mean lag is under 1 second. We set the accuracy threshold
as 0.6 for Dash1 video and 0.8 for remaining videos. It can
be seen from Figure 15 that ILCAS converges 1.15–3.22×
faster than ILCAS w/o Expert. This is because ILCAS uses
the IL framework to train the agent with the expert to guide
the optimal direction of convergence. This advantage of IL
is often referred to as high sample efficiency, which has been
evidenced by previous works [29] [30]. Finally, it is also
interesting to find that ILCAS converges 1.50–3.16× faster
than ILCAS w/o MF. One possible reason is that it is more
efficient for ILCAS to mine the behavior pattern of expert
with motion feature maps.
Impacts of parameter L. Figure 16 reports the performance
of ILCAS on Dash1 video under different values of L.
Overall, increasing L will improve the accuracy of ILCAS,
especially when L is relatively low (e.g., L ≤ 1.0). However,
such performance gain will gradually diminish when L is
sufficiently high (e.g., L > 1.0). Besides, with the increase
of L, the mean upload lag of ILCAS becomes higher and
the lag variance of ILCAS also becomes larger. This suggests
that in practice, it is unnecessary to set L too high for ILCAS,
as it will not significantly improve the task accuracy but
increase the upload lag and lag variance.

7.4 Effectiveness of Cross-Camera Collaboration

In this part, we conduct experiments to verify the effective-
ness of our proposed cross-camera collaboration scheme. We

IEEE TRANSCATIONS ON MOBILE COMPUTING 13

 A -> B B -> A C, D -> A C, D -> B
0.2

0.4

0.6

0.8

1.0

M
ea

n
Ac

cu
ra

cy

Single Para2DConv 3DConv ConvLSTM

(a) Mean accuracy

 A -> B B -> A C, D -> A C, D -> B
0.0

0.3

0.6

0.9

1.2

M
ea

n
La

g
(s

ec
on

ds
)

Single Para2DConv 3DConv ConvLSTM

(b) Mean lag

Fig. 17. The performance of different methods on AI City dataset. X →
Y means X is source camera and Y is target camera.

set the correlation threshold Sthresh = 70% and Tthresh =
90%. We compare the performance of ILCAS with and
without the collaboration scheme on AI City dataset, de-
noted as Single and ConvLSTM, respectively. Additionally,
we also design the following methods to process the motion
feature maps from spatio-temporal correlated cameras for
comparison:

• Para2DConv: This approach uses parallel 2D CNN
sub-networks (described in Figure 8(b)) instead of
ConvLSTM model to process the motion feature
maps from correlated cameras, then merge their out-
puts and feed them into the FC layer.

• 3DConv [31]: This approach replaces the ConvLSTM
model with 3D CNN to extract hidden features from
motion feature maps.

As shown in Figure 17 group 1, we first take camera B as
the target camera and camera A as the source camera. It can
be seen that each cross-camera-enhanced methods achieves
better performance than Single. Even if the Para2DConv uses
the correlated feature maps as inputs straightforwardly, it
still achieves 4% accuracy improvement and reduces the
mean lag by 22.3%. By using 3D CNN to extract spatio-
temporal information, the 3DConv improves the mean accu-
racy by 1% and reduces the mean lag by 57.4%, compare to
the Single. Since the ConvLSTM network shows its superi-
ority in utilizing the spatio-temporal correlations and pre-
dicting future content dynamics, our approach ConvLSTM
outperforms every method by 6-10% accuracy improvement
and 10.2-60.9% lag reduction.

We further analyze the influence of correlations between
cameras. Take camera A as the target camera and camera
B as the source camera in turn, as shown in group 2 of
Figure 17, the performance of camera A is improved by
2-10% and 43.1-49.5% in terms of accuracy and reduction

of lag, respectively. Both camera A and camera B can ben-
efit from one another due to their high spatio-temporal
correlations, which indicates that the potential for cross-
camera enhancement universally exists in highly-correlated
cameras. We next introduce cameras C and D as source
cameras, which have weak correlations to target cameras A
and B. As shown in group 3 and group 4, the cross-camera
scheme does not show significant improvement compared
to the Single approach. One possible reason is that the
motion feature maps from the weakly-correlated cameras
C and D may contain some out-of-stale information that
misleads the agent, leading to performance degradation.
This highlights the importance of analyzing the camera
correlations in cross-camera-based configuration adaption.

8 RELATED WORK

Streaming configuration optimization for live VA. Due
to the limited computing power of front-end devices,
streaming the camera videos over the network to resource-
abundant edge/cloud servers for VA processing is preva-
lent [32] [33] [34]. In this context, optimizing the streaming
configurations to balance the task accuracy and resource
consumption has been extensively studied [10]. For instance,
AWStream [6] identifies the profile that characterizes the
accuracy and bandwidth trade-off of different configura-
tions, and adjusts the data rates based on such profile to
match the available bandwidth while maximizing the appli-
cation accuracy. CASVA [10] is a RL-based streaming system
that aims to maximize the task accuracy and minimize
the upload lag for each chunk by configuration selection.
ILCAS differs from existing works in two aspects. First,
ILCAS implements the state-of-the-art imitation learning
framework GAIL [19] to improve its efficiency in exploring
the configuration space. Second, ILCAS models content
dynamics as motion feature map, which allows ILCAS to
select configurations that match the video contents.
Imitation learning in networking. Recent years have wit-
nessed the successful applications of imitation learning (IL)
in networking fields, such as task scheduling [35], compu-
tation offloading [36], and adaptive bitrate streaming [29].
Wang et al. [35] propose an IL-enabled online task schedul-
ing algorithm for vehicular edge computing (VEC) networks
to minimize the system energy consumption under the task
latency constraints. Yu et al. [36] formulate the computation
offloading problem in mobile edge computing (MEC) net-
works as the multi-label classification problem, and design
an efficient model to solve the problem based on behavioral
cloning. In adaptive bitrate streaming, Comyco [29] trains
a policy network via IL to select bitrates that maximize the
perceptual video quality for users. Unlike these systems, to
the best of our knowledge, ILCAS is the first VA streaming
system that exploits IL for configuration optimization while
adapting to the network environment and video content
changes.
Cross camera collaboration. Video cameras are ubiquitous
in modern cities and cameras closely located in the same
region (e.g., traffic corner) often share some spatial and
temporal correlations [37]. Such correlations have been iden-
tified and explored to optimize the video analytics process.
CrossRoI [38] offline establishes cross-camera correlations

IEEE TRANSCATIONS ON MOBILE COMPUTING 14

and online filters out the redundant information in multiple
camera videos to reduce the redundant data transmitted to
remote server for processing. Respire [39] characterizes the
spatio-temporal redundancy of video frames from multiple
cameras, and only uploads the most informative frames
to cloud servers for analytics to reduce transmission cost.
Polly [40] shares the video analytics results across correlated
cameras to reduce redundant analytic work. Different from
these systems, ILCAS is specially designed for configuration
optimization for live VA streaming. It for the first time
exploits the camera correlations to achieve more adaptive
and robust configuration selection.

9 CONCLUSION

In this paper, we present ILCAS, the first imitation learning-
enabled configuration adaption system for live VA stream-
ing. Unlike DRL-based solutions that heavily rely on reward
functions to train the agent, ILCAS trains the agent with
expert’s demonstrations through the advanced Generative
Adversarial Imitation Learning (GAIL) framework, which
improves the overall performance of ILCAS. To provide
demonstrations for training the agent, we design the expert
as an efficient dynamic programming algorithm. Besides,
ILCAS extracts motion feature map from camera codec to
capture the video content dynamics for more adaptive con-
figuration selection. Additionally, ILCAS also incorporates
a cross-camera collaboration scheme to exploit the camera
correlations for better performance in a camera network.
Experiments demonstrate that ILCAS outperforms existing
state-of-the-art solutions by improving the mean accuracy
by 2.0-20.9% and reducing the mean lag by 19.9-85.3%.
We also show that the cross-camera collaboration scheme
enhances ILCAS in a dense camera network.

ACKNOWLEDGMENTS

The work was supported in part by the Basic Research
Project No. HZQB-KCZYZ-2021067 of Hetao Shenzhen-HK
S&T Cooperation Zone, by NSFC (Grant No. 62293482
and No. 62102342), the Guangdong Basic and Applied
Basic Research Foundation (Grant No. 2023A1515012668),
the Shenzhen Science and Technology Program (Grant
No. RCBS20221008093120047), the Shenzhen Outstanding
Talents Training Fund 202002, the Guangdong Research
Projects No. 2017ZT07X152 and No. 2019CX01X104, the
Young Elite Scientists Sponsorship Program of CAST
(Grant No. 2022QNRC001), the Guangdong Provincial
Key Laboratory of Future Networks of Intelligence
(Grant No. 2022B1212010001), the Shenzhen Key Labora-
tory of Big Data and Artificial Intelligence (Grant No.
ZDSYS201707251409055).

REFERENCES

[1] T. Abdullah, A. Anjum, M. F. Tariq, Y. Baltaci, and N. Antonopou-
los, “Traffic monitoring using video analytics in clouds,” in Pro-
ceedings of the IEEE/ACM UCC, 2014, pp. 39–48.

[2] Q. Guo, J. Peng, W. Xu, W. Liang, X. Jia, Z. Xu, Y. Yang, and
M. Wang, “Minimizing the longest tour time among a fleet of
UAVs for disaster area surveillance,” IEEE Transactions on Mobile
Computing, vol. 21, no. 7, pp. 2451–2465, 2022.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” Ad-
vances in Neural Information Processing Systems, vol. 28, 2015.

[4] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for real-time
semantic segmentation on high-resolution images,” in Proceedings
of the ECCV, 2018, pp. 405–420.

[5] M. Zhang, Y. Zhu, L. Shen, F. Wang, and J. Liu, “Omnisense:
Towards edge-assisted online analytics for 360-degree videos,” in
Proceedings of the IEEE INFOCOM, 2023, pp. 1–10.

[6] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee, “AW-
Stream: Adaptive wide-area streaming analytics,” in Proceedings of
the ACM SIGCOMM, 2018, pp. 236–252.

[7] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance,” in Proceedings of the USENIX NSDI,
2017, pp. 377–392.

[8] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proceed-
ings of the ACM SIGCOMM, 2018, pp. 253–266.

[9] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman,
P. Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus:
Querying large video datasets with low latency and low cost,”
in Proceedings of the USENIX OSDI, 2018, pp. 269–286.

[10] M. Zhang, F. Wang, and J. Liu, “CASVA: Configuration-adaptive
streaming for live video analytics,” in Proceedings of the IEEE
INFOCOM, 2022, pp. 2168–2177.

[11] R. Zhang, Y. Zhou, F. Wang, and Z. Wang, “Maxim: DRL-based
cross-camera streaming configuration for real-time video analyt-
ics,” in Proceedings of the IEEE ICME, 2022, pp. 1–6.

[12] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation
learning: A survey of learning methods,” ACM Computing Surveys,
vol. 50, no. 2, pp. 1–35, 2017.

[13] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang, “Real-
time action recognition with enhanced motion vector CNNs,” in
Proceedings of the IEEE CVPR, 2016.

[14] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on im-
itation learning techniques for end-to-end autonomous vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9,
pp. 14 128–14 147, 2022.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[16] “2022 AI city challenge - track 1: City-scale
multi-camera vehicle tracking.” [Online]. Available:
https://www.aicitychallenge.org/2022-data-and-evaluation/

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
CVPR, 2016, pp. 779–788.

[18] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo,
“Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,” Advances in Neural Information Process-
ing Systems, vol. 28, 2015.

[19] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
in Advances in Neural Information Processing Systems, vol. 29, 2016.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[21] “SR 520 bridge tolling.” [Online]. Available:
https://www.wsdot.wa.gov/Tolling/520/default.htm

[22] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video an-
alytics on large camera networks,” in Proceedings of the IEEE/ACM
SEC, 2020, pp. 110–124.

[23] “Skyline views - Chicago 4K - driving downtown.”
[Online]. Available: https://www.youtube.com/watch?v=O-
YPkapBT8g&t=77s

[24] “London 4K - night drive - UK.” [Online]. Available:
https://www.youtube.com/watch?v=Ujyu8foke60

[25] “4K road traffic video for object de-
tection and tracking.” [Online]. Available:
https://www.youtube.com/watch?v=MNn9qKG2UFI&t=81s

[26] “4K video of highway traffic.” [Online]. Available:
https://www.youtube.com/watch?v=KBsqQez-O4w

[27] “Road traffic video for object recognition.” [Online]. Available:
https://www.youtube.com/watch?v=wqctLW0Hb 0

[28] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R.
Alface, T. Bostoen, and F. De Turck, “HTTP/2-based adaptive

IEEE TRANSCATIONS ON MOBILE COMPUTING 15

streaming of HEVC video over 4G/LTE networks,” IEEE Com-
munications Letters, vol. 20, no. 11, pp. 2177–2180, 2016.

[29] T. Huang, C. Zhou, X. Yao, R.-X. Zhang, C. Wu, B. Yu, and L. Sun,
“Quality-aware neural adaptive video streaming with lifelong im-
itation learning,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 10, pp. 2324–2342, 2020.

[30] W. Li, J. Huang, S. Wang, C. Wu, S. Liu, and J. Wang, “An
apprenticeship learning approach for adaptive video streaming
based on chunk quality and user preference,” IEEE Transactions on
Multimedia, 2022.

[31] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learn-
ing spatiotemporal features with 3D convolutional networks,” in
Proceedings of the IEEE ICCV, 2015, pp. 4489–4497.

[32] R.-X. Zhang, C. Li, C. Wu, T. Huang, and L. Sun, “Owl: A pre-
and post-processing framework for video analytics in low-light
surroundings,” in Proceedings of the IEEE INFOCOM, 2023, pp. 1–
10.

[33] T. Yuan, L. Mi, W. Wang, H. Dai, and X. Fu, “AccDecoder: Acceler-
ated decoding for neural-enhanced video analytics,” in Proceedings
of the IEEE INFOCOM, 2023, pp. 1–10.

[34] L. Zhang, Y. Zhang, X. Wu, F. Wang, L. Cui, Z. Wang, and J. Liu,
“Batch adaptative streaming for video analytics,” in Proceedings of
the IEEE INFOCOM, 2022, pp. 2158–2167.

[35] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning
enabled task scheduling for online vehicular edge computing,”
IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 598–611,
2022.

[36] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intel-
ligent edge: Leveraging deep imitation learning for mobile edge
computation offloading,” IEEE Wireless Communications, vol. 27,
no. 1, pp. 92–99, 2020.

[37] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez,
“Scaling video analytics systems to large camera deployments,”
in Proceedings of the ACM HotMobile, 2019, pp. 9–14.

[38] H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “CrossRoI:
cross-camera region of interest optimization for efficient real time
video analytics at scale,” in Proceedings of the ACM MMSys, 2021,
pp. 186–199.

[39] X. Dai, P. Yang, X. Zhang, Z. Dai, and L. Yu, “Respire: Reducing
spatial–temporal redundancy for efficient edge-based industrial
video analytics,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 12, pp. 9324–9334, 2022.

[40] L. Jingzong, L. Liu, H. Xu, S. Wu, and C. J. Xue, “Cross-camera
inference on the constrained edge,” in Proceedings of the IEEE
INFOCOM, 2023, pp. 1–10.

Duo Wu received the B.Eng. degree from the
College of Information Science and Technology,
Jinan University in 2022. He is currently pursuing
the M.Phil. degree in the School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen. His current research interests
include multimedia networking, video analytics,
video streaming and machine learning.

Dayou Zhang received the B.S. degree from
the School of Information and Electronics, Bei-
jing Institute of Technology, Beijing, China, in
2017. He is currently pursuing the Ph.D. degree
in the School of Science and Engineering, The
Chinese University of Hong Kong, Shenzhen,
China. His areas of interest are multimedia net-
working, real-time video streaming, neural video
coding, and machine learning.

Miao Zhang (Student Member, IEEE) received
the B.Eng. degree from Sichuan University in
2015 and the M.Eng. degree from Tsinghua
University in 2018. She is currently pursuing
the Ph.D. degree with Simon Fraser University,
Canada. Her research areas include cloud and
edge computing and multimedia systems and
applications.

Ruoyu Zhang received the B.Eng. degree from
the Zhuoyue Honors College, Hangzhou Danzi
University in 2021. He is currently pursuing the
M.Phil. degree in the School of Science and En-
gineering, The Chinese University of Hong Kong,
Shenzhen. His research interests include multi-
media networking, video analytics and machine
learning.

Fangxin Wang (S’15-M’20) is an assistant pro-
fessor at The Chinese University of Hong Kong,
Shenzhen (CUHKSZ). He received the Ph.D.,
M.Eng., and B.Eng. degree all in Computer Sci-
ence and Technology from Simon Fraser Univer-
sity, Tsinghua University, and Beijing University
of Posts and Telecommunications, respectively.
Dr. Wang’s research interests include Multime-
dia Systems and Applications, Cloud and Edge
Computing, Deep Learning and Big Data Analyt-
ics, Distributed Networking and System. He has

published more than 30 papers at top journal and conference papers,
including INFOCOM, Multimedia, ToN, TMC, IOTJ, etc.

Shuguang Cui (S’99-M’05-SM’12-F’14) re-
ceived his Ph.D in Electrical Engineering from
Stanford University, California, USA, in 2005.
Afterwards, he has been working as assistant,
associate, full, Chair Professor in Electrical and
Computer Engineering at the Univ. of Arizona,
Texas A&M University, UC Davis, and CUHK at
Shenzhen, respectively. He was selected as the
Thomson Reuters Highly Cited Researcher and
listed in the Worlds Most Influential Scientific
Minds by ScienceWatch in 2014. He has also

been serving as the area editor for IEEE Signal Processing Maga-
zine, and associate editors for IEEE Transactions on Big Data, IEEE
Transactions on Signal Processing. He is a member of the Steering
Committee for IEEE Transactions on Big Data and the Chair of the
Steering Committee for IEEE Transactions on Cognitive Communica-
tions and Networking. He was elected as an IEEE Fellow in 2013, an
IEEE ComSoc Distinguished Lecturer in 2014, and IEEE VT Society
Distinguished Lecturer in 2019.

